初中数学第十四章 一次函数综合与测试课后复习题
展开
这是一份初中数学第十四章 一次函数综合与测试课后复习题,共29页。试卷主要包含了已知点,变量,有如下关系等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个一次函数图象与直线y=x+平行,且过点(﹣1,﹣25),与x轴、y轴的交点分别为A、B,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )
A.4个 B.5个 C.6个 D.7个
2、若直线y=kx+b经过A(0,2)和B(3,-1)两点,那么这个一次函数关系式是( )
A.y=2x+3 B.y=3x+2 C.y=-x+2 D.y=x-1
3、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
4、已知点(﹣1,y1)、(2,y2)在函数y=﹣2x+1图象上,则y1与y2的大小关系是( )
A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
5、如图,已知直线y=kx+b和y=mx+n交于点A(﹣2,3),与x轴分别交于点B(﹣1,0)、C(3,0),则方程组的解为( )
A. B. C. D.无法确定
6、变量,有如下关系:①;②;③;④.其中是的函数的是( )
A.①②③④ B.①②③ C.①② D.①
7、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程).下列4个说法:
①越野登山比赛的全程为1000米;
②甲比乙晚出发40分钟;
③甲在途中休息了10分钟;
④乙追上甲时,乙跑了750米.其中正确的说法有( )个
A.1 B.2 C.3 D.4
8、在平面直角坐标系中,任意两点,,,.规定运算:①,;②;③当,且时,.
有下列三个命题:
(1)若,,则,;
(2)若,则;
(3)对任意点,,,均有成立.
其中正确命题的个数为( )
A.0个 B.1个 C.2个 D.3个
9、下面关于函数的三种表示方法叙述错误的是( )
A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
C.用解析式法表示函数关系,可以方便地计算函数值
D.任何函数关系都可以用上述三种方法来表示
10、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在中,的取值范围为______.
2、请写出符合以下两个条件的一个函数解析式______.①过点(-2,1),②在第二象限内,y随x增大而增大.
3、在平面直角坐标系中有两点,,如果点在轴上方,由点,,组成的三角形与全等时,此时点的坐标为______.
4、在平面直角坐标系中,点A的坐标为,点B的坐标为,点P在y轴上,当的值最小时,P的坐标是______.
5、一次函数的图象经过第一、三、四象限,则k的取值范围是______________.
三、解答题(5小题,每小题10分,共计50分)
1、王亮家距离李刚家6.5千米,星期天王亮骑车去李刚家玩,中途自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到李刚家.王亮的行驶路程(千米)与所用时间(分钟)之间的函数图象如图所示:
(1)求王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;
(2)求当王亮距离李刚家1.5千米时,的值.
2、某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.
(1)直线l1对应的函数表达式是 ,每台电脑的销售价是 万元;
(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式: ;
(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);
(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.
3、在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.
(1)k的值是 ;
(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.
①如图,点D的坐标为(6,0),点E的坐标为(0,1),若四边形OECD的面积是9,求点C的坐标;
②当CE平行于x轴,CD平行于y轴时,若四边形OECD的周长是10,请直接写出点C的坐标.
4、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.
(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1 ,3),点B坐标为(2 ,1);
(2)请画出△ABC关于y轴对称的图形△A1B1C1,并写出点B1的坐标为 ;
(3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为 .
5、如图,在平面直角坐标系xoy中,的顶点O是坐标原点,点A在第一象限,点B在x轴的正半轴上,且,,点C是直线OC上一点,且在第一象限,,满足关系式.
(1)请直接写出点A的坐标;
(2)点P是线段OB上的一个动点(点P不与点O重合),过点P的直线l与x轴垂直,直线l交边或边AB于点Q,交OC于点R.设点P的横坐标为t,线段QR的长度为m.当时,直线l恰好过点C.
①求直线OC的函数表达式;
②当时,请直接写出点P的坐标;
③当直线RQ与直线OC所组成的角被射线RA平分时,请直接写出t的值.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由题意可得:求出符合条件的直线为5x﹣4y﹣75=0,即可求出此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),再设出在直线AB上并且横、纵坐标都是整数的点的坐标,进而结合题意得到不等式求出N的范围,即可得到N的取值得到答案.
【详解】
解:设直线AB的解析式为y=kx+b,
∵一次函数图象与直线y=x+平行,
∴k=,
又∵所求直线过点(﹣1,﹣25),
∴﹣25=×(﹣1)+b,
解得b=﹣,
∴直线AB为y=x﹣,
∴此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),
设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣25+5N,(N是整数).
因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣25+5N≤0,
解得:≤N≤4,
所以N=1,2,3,4共4个,
故选:A.
【点睛】
本题考查一次函数图象上点的坐标特征,根据题意写出x和y的表示形式是解题的关键.
2、C
【解析】
【分析】
把两点的坐标代入函数解析式中,解二元一次方程组即可求得k与b的值,从而求得一次函数解析式.
【详解】
解:由题意得:
解得:
故所求的一次函数关系为
故选:C.
【点睛】
本题考查了用待定系数法求一次函数的解析式,其一般步骤是:设函数解析式、代入、求值、求得解析式.
3、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
C、乙行驶的速度为
∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
D、;
∴0.75h或1.125h时,乙比甲多行驶10km,
∴选项D说法正确,不符合题意.
故选C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
4、A
【解析】
【分析】
先根据一次函数的解析式判断出函数的增减性,再根据−1<2即可得出结论.
【详解】
解:∵一次函数y=−2x+1中,k=−2<0,
∴y随着x的增大而减小.
∵点(﹣1,y1)、(2,y2)是一次函数y=−2x+1图象上的两个点,−1<2,
∴y1>y2.
故选:A.
【点睛】
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象的增减性是解答此题的关键.
5、A
【解析】
【分析】
根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.
【详解】
解:由图象及题意得:
∵直线y=kx+b和y=mx+n交于点A(﹣2,3),
∴方程组的解为.
故选:A.
【点睛】
本题主要考查一次函数与二元一次方程组的解,熟练掌握一次函数的图象与性质是解题的关键.
6、B
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.
【详解】
解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
④,当时,,则y不是x的函数;
综上,是函数的有①②③.
故选:B.
【点睛】
本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.
7、C
【解析】
【分析】
根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB段为甲休息的时间即可判断③;设乙需要t分钟追上甲,,求出t即可判断④.
【详解】
解:由图像可知,从起点到终点的距离为1000米,故①正确;
根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;
在AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确;
∵乙从起点到终点的时间为10分钟,
∴乙的速度为1000÷10=100米/分钟,
设乙需要t分钟追上甲,
,
解得t=7.5,
∴乙追上甲时,乙跑了7.5×100=750米,故④正确;
故选C.
【点睛】
本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
8、D
【解析】
【分析】
根据新的运算定义分别判断每个命题后即可确定正确的选项.
【详解】
解:(1)A⊕B=(1+2,2-1)=(3,1),A⊗B=1×2+2×(-1)=0,
∴①正确;
(2)设C(x3,y3),A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),
∵A⊕B=B⊕C,
∴x1+x2=x2+x3,y1+y2=y2+y3,
∴x1=x3,y1=y3,
∴A=C,
∴②正确.
(3)∵(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),
∴(A⊕B)⊕C=A⊕(B⊕C),
∴③正确.
正确的有3个,
故选:D.
【点睛】
本题考查了命题与定理,解题时注意:判断一件事情的语句,叫做命题.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
9、D
【解析】
【分析】
根据函数三种表示方法的特点即可作出判断.
【详解】
前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的.
故选:D
【点睛】
本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.
10、A
【解析】
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
二、填空题
1、x>-3
【解析】
【分析】
根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.
【详解】
解:由题意得:2x+6>0,
解得:x>-3,
故答案为:x>-3.
【点睛】
本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.
2、(答案不唯一)
【解析】
【分析】
根据一次函数的性质,即可求解.
【详解】
解:根据题意得:符合条件的函数是一次函数,且自变量的系数小于0,过点(-2,1)
如 等.
故答案为: (答案不唯一)
【点睛】
本题主要考查了书写一次函数的解析式,熟练掌握一次函数的性质是解题的关键.
3、 (4,2)或(-4,2) ##(-4,2)或(4,2)
【解析】
【分析】
根据点的坐标确定OA、OB的长,然后利用全等可分析点的位置,最后分情况解答即可.
【详解】
解:∵在平面直角坐标系中有两点A(4,0)、B(0,2),
∴OA=4,OB=2,∠AOB=90°
∵△CBO≌△AOB
∴CB= OA =4,OB=OB=2,
∵点在轴上方
∴当点C在第一象限时,C点坐标为(4,2)
当点C在第二象限时,C点坐标为(-4,2)
∴C的坐标可以为(4,2)或(-4,2).
故填(4,2)或(-4,2).
【点睛】
本题主要考查了全等三角形的性质,掌握分类讨论思想、做到不重不漏是解答本题的关键.
4、(0,1)
【解析】
【分析】
如图,作点A关于y轴的对称点A,连接BA交y轴于P,连接PA,点P即为所求.求出直线BA的解析式即可解决问题;
【详解】
解:如图,作点A关于y轴的对称点A,连接BA交y轴于P,连接PA,点P即为所求.
设直线BA的解析式为y=kx+b,
∵A(−1,2),B(2,−1),
则有:,
解得,
∴直线BA的解析式为y=−x+1,
令x=0,y=1
∴P(0,1),
故答案为:(0,1).
【点睛】
本题考查轴对称最短问题,一次函数的应用等知识,解题的关键是学会利用轴对称解决最短问题,学会构建一次函数解决交点坐标问题.
5、##
【解析】
【分析】
根据题意,得k>0,2k-3<0,求解即可.
【详解】
∵一次函数的图象经过第一、三、四象限,
∴k>0,2k-3<0,
∴k的取值范围是,
故答案为:.
【点睛】
本题考查了一次函数图像分布与k,b的关系,根据图像分布,列出不等式,准确求解即可.
三、解答题
1、(1)王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=0.3t-2.5;(2)t=7.5.
【解析】
【分析】
(1)根据待定系数法求解析式设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=mt+n,函数过点(15,2)(30,6.5)代入得方程组15m+n=230m+n=6.5,然后解方程组即可;
(2)利用待定系数法求正比例函数解析式,再根据函数值解方程即可.
【详解】
解:(1)设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=mt+n
函数过点(15,2)(30,6.5)代入得:
15m+n=230m+n=6.5,
解得:m=0.3n=-2.5,
∴王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=0.3t-2.5;
(2)设修车之前解析式为s=kt,代入(10,2)得:
2=10k,
解得k=15,
∴s=15t,
当s=1.5时,15t=1.5,
解得t=7.5分.
【点睛】
本题考查一次函数的应用,从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组,掌握从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组是解题关键.
2、(1)y=0.8x,0.8;(2)y2=0.4x+3;(3)见解析;(4)8台
【解析】
【分析】
(1)由函数图象知,y与x成正比例函数关系且过(5,4),待定系数法可求得直线l1对应的函数表达式,再根据每台电脑售价=每天销售收入÷销售量可得;
(2)根据:每天总成本=电脑的总成本+每天的固定支出,可列函数关系式;
(3)根据(2)中函数关系式,确定两点(0,3),(5,5),作射线即可;
(4)根据:商场每天利润=电脑的销售收入−每天的总成本,列出函数关系式,根据题意得到不等式,解不等式即可.
【详解】
解:(1)设y=kx,将(5,4)代入,得k=0.8,故y=0.8x,
每台电脑的售价为:=0.8(万元);
(2)根据题意,商场每天的总成本y2=0.4x+3;
(3)如图所示,
(3)商场每天的利润W=y-y2=0.8x-(0.4x+3)=0.4x-3,
当W>0,即0.4x-3>0时商场开始盈利,解得:x>7.5.
答:每天销售量达到8台时,商场可以盈利.
【点睛】
本题主要考查一次函数的实际应用,熟悉一次函数解析式的求法、图象的画法及根据实际问题列函数关系式是解题关键.
3、(1);(2)①;②或.
【解析】
【分析】
(1)把A(8,0)的坐标代入函数解析式即可;
(2)①由四边形,则在线段上时,如图,利用四边形OECD的面积是9,再列方程解题即可;②分三种情况讨论,如图,当在线段上时, 当在的延长线上时,当在的延长线时,设再利用四边形OECD的周长是10,列方程求解即可.
【详解】
解:(1) 直线y=kx+4(k≠0)交x轴于点A(8,0),
解得:
故答案为:
(2)①由(1)得:
令 则 即
点D的坐标为(6,0),点E的坐标为(0,1),
设
由四边形OECD的面积是9,则在线段上,
解得: 则
②当CE平行于x轴,CD平行于y轴时,
轴,轴,
如图,当在线段上时,设
则
四边形OECD的周长是10,
解得: 则
当在的延长线上时,
同理可得:
解得: 则
当在的延长线时,如图,
四边形的周长大于,故不符合题意,舍去,
综上:或.
【点睛】
本题考查的是一次函数的性质,坐标与图形,掌握“利用周长与面积列方程”是解本题的关键.
4、(1)见详解;(2)△A1B1C1即为所求,见详解,(-2,1);(3)(0,3).
【解析】
【分析】
(1)根据点A及点B的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;
(2)根据平面直角坐标系求出点C坐标,根据ABC关于y轴对称的图形为△A1B1C1,求出A1(-1,3),B1(-2,1),C1(-4,7),描点A1(-1,3),B1(-2,1),C1(-4,7),再顺次连接即可画出ABC关于y轴对称的图形为△A1B1C1;
(3)过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接BC1与y轴相交,此交点即为点P即可得出PB+PC的值最小,先证△GBC1为等腰直角三角形,再证△PHB为等腰直角三角形,最后求出y轴交点坐标即可.
【详解】
解:(1)点A坐标为(1 ,3),点B坐标为(2 ,1)
点A向左平移1个单位为y轴,再向下平移3个单位为x轴,建立如图平面直角坐标系,
如图所示:即为作出的平面直角坐标系;
(2)根据图形得出出点C(4,7)
∵△ABC关于y轴对称的图形△A1B1C1,关于y轴对称的点的特征是横坐标互为相反数,纵坐标不变,
∵A(1,3),B (2,1),C(4,7),
∴A1(-1,3),B1(-2,1),C1(-4,7),
在平面直角坐标系中描点A1(-1,3),B1(-2,1),C1(-4,7),
顺次连接A1B1, B1C1, C1 A1,
如图所示:△A1B1C1即为所求,
故答案为:(-2,1);
(3)如图所示:点P即为所求作的点.过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,
∵点C的对称点为C1,
∴连接BC1与y轴相交于一点即为点P,此时PB+PC的值最小,
∵B(2,1),C1(-4,7),
∴C1G=7-1=6,BG=2-(-4)=6,
∴C1G=BG,
∴△GBC1为等腰直角三角形,
∴∠GBC1=45°,
∵∠OHB=90°,
∴△PHB为等腰直角三角形,
∴yP-1=2-0,
解得yP=3,
∴点P(0,3).
故答案为(0,3).
【点睛】
本题考查了建立平面直角坐标系,画轴对称图形,等腰直角三角形判定与性质,最短路径,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图,待定系数法求解析式是解答本题的关键.
5、(1)(3,3);(2)①直线OC的函数表达式为;②点P坐标为(,0)或(,0);③t的值为,或
【解析】
【分析】
(1)过A作AD⊥x轴于点D,根据等腰直角三角形的性质得出OD=OA=3,即可得到A坐标为(3,3),;
(2)①由,且,可得OC=,在中,利用勾股定理求得BC的值,即可得到点C坐标,设出直线OC的函数表达式为y=kx,把(6,2)代入 求出k的值,即可得到直线OC的函数表达式;②先求出直线AB的解析式,由题意点得P(t,0),Q(t,t)或(t,),R(t,),列出方程,即可求得点P坐标;③先求出点H的坐标为(,),再根据面积法求出,最后分两种情况讨论即可.
【详解】
(1)过A作AD⊥x轴于点D,
∵OB=6,OA=AB,∠OAB=90°,
∴AD平分∠OAB,且OD=BD=3,
∴∠OAD=∠AOD=45°,
∴OD=DA=3,
∴A坐标为(3,3),
故答案为:(3,3);
(2)①∵,且,
∴OC=,
当时,点P坐标为(6,0),
∵直线l恰好过点C,
,
,
,
点C坐标为(6,2),
设直线OC的函数表达式为y=kx,把(6,2)代入,
得:6k=2,
解得,
故直线OC的函数表达式为;
②设直线OC与直线AB交于点H,直线AB的解析式为,
∴,
∴,
∴直线AB的解析式为,
∵点P的横坐标为t,点R在直线上,
∴点P(t,0),Q(t,t)或(t,),R(t,),
∵线段QR的长度为m,
∴或
当时,或
解得:或或
故点P坐标为(,0)或(,0)或(,0);
③∵直线AB的解析式为,
联立,解得,
∴点H的坐标为(,),
∴,,,
∵,
∴,
过点A作AM⊥直线l,AN⊥直线OC,如图:
或
则:AM=,
∵直线RQ与直线OC所组成的角被射线RA平分,
AM=AN,
即=,
解得或,
故t的值为或.
【点睛】
此题考查等腰直角三角形的性质、求一次函数函数解析式、角平分线的性质、点到直线的距离、勾股定理的应用.作出相应的图形,分类讨论是解答此题的关键.
相关试卷
这是一份北京课改版八年级下册第十四章 一次函数综合与测试单元测试复习练习题,共28页。试卷主要包含了已知点P,函数y=的自变量x的取值范围是,已知一次函数与一次函数中,函数等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共23页。试卷主要包含了如图,过点A,点A个单位长度.,已知点P等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题,共19页。试卷主要包含了下列命题中,真命题是,点P的坐标为,函数y=的自变量x的取值范围是,已知函数和 的图象交于点P等内容,欢迎下载使用。