初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步练习题
展开
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步练习题,共22页。试卷主要包含了变量,有如下关系等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系.则小亮步行的速度和乘公交车的速度分别是( )A.100 m/min,266m/min B.62.5m/min,500m/minC.62.5m/min,437.5m/min D.100m/min,500m/min2、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )A. B.C. D.3、已知点A(a+9,2a+6)在y轴上,a的值为( )A.﹣9 B.9 C.3 D.﹣34、已知4个正比例函数y=k1x,y=k2x,y=k3x,y=k4x的图象如图,则下列结论成立的是( )A.k1>k2>k3>k4 B.k1>k2>k4>k3C.k2>k1>k3>k4 D.k4>k3>k2>k15、变量,有如下关系:①;②;③;④.其中是的函数的是( )A.①②③④ B.①②③ C.①② D.①6、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)7、已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是( )A. B. C. D.8、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)9、如图,直线与分别交轴于点,,则不等式的解集为( ).A. B. C. D.或10、若点在第三象限,则点在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、直线y=-3x+12与x轴的交点坐标是______.2、若y关于x的函数y=﹣7x+2+m是正比例函数,则m=_____.3、如图,函数和的图象相交于,则不等式的解集为____.4、已知一次函数(、是常数,)的图像与轴交于点,与轴交于点.若,则的取值范围为______.5、一次函数y=kx+b的图象如图所示,当x满足 _____时,y≥1.三、解答题(5小题,每小题10分,共计50分)1、已知函数y=(m-3)x+(m2-9),当m取何值时,y是x的正比例函数?2、为响应政府号召,某地水果种植户借助电商平台,在线下批发的基础上同步在电商平台上零售水果.已知线上零售40千克,线下批发80千克水果共获得4000元;线上零售60千克和线下批发80千克水果销售额相同.(1)求线上零售和线下批发水果的单价分别为每千克多少元?(2)若该地区水果种植户张大叔某月线上零售和线下批发共销售水果2000千克,设线上零售m千克.获得的总销售额为w元.①求w与m之间的函数关系式;②若总销售额为70000元,则线上零售量为多少千克?3、为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买、两种不同型号的篮球共300个.已知购买3个型篮球和2个型篮球共需340元,购买2个型篮球和1个型篮球共需要210元.(1)求购买一个型篮球、一个型篮球各需多少元?(2)若该校计划投入资金元用于购买这两种篮球,设购进的型篮球为个,求关于的函数关系式;(3)学校在体育用品专卖店购买、两种型号篮球共300个,经协商,专卖店给出如下优惠:种球每个降价8元,种球打9折,计算下来,学校共付费16740元,学校购买、两种篮球各多少个?4、已知直线l1:y=-x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交与点C,且C点的横坐标为1.(1)求直线l1的解析式;(2)过点A作x轴的垂线,若点P为垂线上的一个动点,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时点P的坐标;(3)E点的坐标为(﹣2,0),将直线l1绕点C顺时针旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标;若不存在,请说明理由.5、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点的坐标分别是,,.(1)求的面积;(2)在图中作出关于轴的对称图形;(3)写出点,的坐标. -参考答案-一、单选题1、D【解析】【分析】根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.【详解】解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;公交车(30−16)min走了(8−1)km,故公交车的速度为7000÷14=500m/min.故选:D.【点睛】本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.2、D【解析】【分析】根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.【详解】解:过点A作AD′⊥BC于点D′,如图,由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可知,D选项是正确的;故选:D.【点睛】本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.3、A【解析】【分析】根据y轴上点的横坐标为0列式计算即可得解.【详解】解:∵点A(a+9,2a+6)在y轴上,∴a+9=0,解得:a=-9,故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.4、A【解析】【分析】首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.【详解】解:首先根据直线经过的象限,知:k3<0,k4<0,k1>0,k2>0,再根据直线越陡,|k|越大,知:|k1|>|k2|,|k4|>|k3|.则k1>k2>k3>k4,故选:A.【点睛】本题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.5、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.【详解】解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;④,当时,,则y不是x的函数;综上,是函数的有①②③.故选:B.【点睛】本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.6、B【解析】【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:点的运动规律是每运动四次向右平移四个单位,,动点第2021次运动时向右个单位,点此时坐标为,故选:B.【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.7、C【解析】【分析】由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,∴k<0,∴-k>0,∴一次函数y=kx-k的图象经过一、二、四象限;故选:C.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.8、A【解析】【分析】由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.【详解】解:由题意可知BO=CO,∵又AB=AC,∴AO⊥BC,∴点A在y轴上,∴选项A符合题意,B选项三点共线,不能构成三角形,不符合题意;选项C、D都不在y轴上,不符合题意;故选:A.【点睛】本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.9、C【解析】【分析】观察图象,可知当x<0.5时,y=kx+b>0,y=mx+n<0;当0.5<x<2时,y=kx+b<0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,二者相乘为正的范围是本题的解集.【详解】解:由图象可得,当x>2时,(kx+b)<0,(mx+n)>0,则(kx+b)(mx+n)<0,故A错误;当0<x<2时,kx+b<0,mx+n<0,(kx+b)(mx+n)>0,但是没有包含所有使得(kx+b)(mx+n)>0的解集,故B错误;当时,kx+b<0,mx+n<0,故(kx+b)(mx+n)>0,且除此范围之外都不能使得(kx+b)(mx+n)>0,故C正确;当x<0.5时,y=kx+b>0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,则(kx+b)(mx+n)<0,故D错误;故选:C.【点睛】本题考查了利用函数图象来解一元一次不等式,数形结合是解答本题的关键.10、A【解析】【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.【详解】∵点P(m,n)在第三象限,∴m<0,n<0,∴-m>0,-n>0,∴点在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、( 4,【解析】【分析】令y=0,求出x的值即可得出结论.【详解】,当时,,得,即直线与轴的交点坐标为:( 4,,故答案为( 4,.【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于令y=02、﹣2【解析】【分析】根据正比例函数的定义得到2+m=0,然后解方程得m的值.【详解】解:∵y关于x的函数y=﹣7x+2+m是正比例函数,∴2+m=0,解得m=﹣2.故答案为﹣2.【点睛】本题考查了正比例函数的定义,掌握正比例函数的定义是解题的关键.形如是正比例函数.3、【解析】【分析】观察函数图象得到,当时,直线都在直线的下方,于是可得到不等式的解集.【详解】解:由图象可知,在点A左侧,直线的函数图像都在直线的函数图像得到下方,即当时,.∴不等式的解集为,故答案为:.【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.4、【解析】【分析】将已知点、代入后可得,再根据的取值范围可得的取值范围.【详解】解:∵一次函数(、是常数,)的图像与轴交于点,与轴交于点,∴,∴,∵,∴,即.故答案为:.【点睛】本题考查待定系数法求一次函数解析式,解一元一次不等式,能代入点求得和的关系是解题关键.5、【解析】【分析】直接利用函数的图象确定答案即可.【详解】解:观察图象知道,当x=0时,y=1,∴当x≤0时,y≥1,故答案为:x≤0.【点睛】本题考查了函数的图象的知识,属于基础题,主要考查学生对一次函数图象获取信息能力及对解不等式的考查.三、解答题1、-3【解析】【分析】根据正比例函数定义即可求解.【详解】解:∵y=(m-3)x+(m2-9)是正比例函数,∴m2-9=0且m-3≠0,∴m=.【点睛】本题考查了正比例函数的定义,熟知正比例函数的定义“形如(k为常数,且k≠0)的函数叫正比例函数”是解题关键 .2、(1)线上零售水果的单价为每千克40元,线下批发的单价为每千克30元;(2)①;②线上零售量为到1000千克.【解析】【分析】(1)设线上零售水果的单价为每千克x元,线下批发的单价为每千克y元,根据题意列出二元一次方程组求解即可;(2)①由题意可得:线上零售m千克,则线下批发千克,利用销售数量、单价、销售总价的关系即可得;②当时,代入①结论求解即可得.【详解】解:(1)设线上零售水果的单价为每千克x元,线下批发的单价为每千克y元,由题意得:,解得:,∴线上零售水果的单价为每千克40元,线下批发的单价为每千克30元;(2)①由题意可得:线上零售m千克,则线下批发千克, ,即函数关系式为:;②由(1)可得:当时,,解得:,∴线上零售量为到1000千克.【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应的方程及函数解析式是解题关键.3、(1)一个A型篮球为80元,一个B型篮球为50元;(2)函数解析式为:;(3)A型篮球120个,则B型篮球为180个.【解析】【分析】(1)设一个A型篮球为x元,一个B型篮球为y元,根据题意列出方程组求解即可得;(2)A型篮球t个,则B型篮球为个,根据单价、数量、总价的关系即可得;(3)根据A型篮球与B型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.【详解】解:(1)设一个A型篮球为x元,一个B型篮球为y元,根据题意可得:,解得:,∴一个A型篮球为80元,一个B型篮球为50元;(2)A型篮球t个,则B型篮球为个,根据题意可得:,∴函数解析式为:;(3)根据题意可得:A型篮球单价为元,B型篮球单价为元,则,解得:,,∴A型篮球120个,则B型篮球为180个.【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.4、(1);(2)点的坐标;(3)点的坐标为或,或.【解析】【分析】(1)当时,,即点的坐标为,将点的坐标代入直线得:,解得:,即可求解;(2)确定点的对称点、点的对称点,连接,此时,的值最小,即可求解;(3)①当点在直线上方,画出图形,证明,利用,,即可求解.②当点在直线下方时,同①的方法即可得出结论.③如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得结论.【详解】解:(1)当时,,即点的坐标为,将点的坐标代入直线得:,解得:,故:直线的解析式为:;(2)确定点关于过点垂线的对称点、点关于轴的对称点,连接交过点的垂线与点,交轴于点,此时,的值最小,如图所示:将点、点的坐标代入一次函数表达式:得:,解得:,则直线的表达式为:,当时,,即点的坐标为,的值,即:当的值最小为时,此时点的坐标;(3)将、点坐标代入一次函数表达式,同理可得其表达式为①当点在直线上方时,设点,点,点,过点、分别作轴的平行线交过点与轴的平行线分别交于点、,,,,,,,,,即,解得.故点的坐标为,②当点在下方时,如图1,过点作轴,与过点作轴的平行线交于,与过点作轴的平行线交于,同①的方法得,,③如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得 即:点的坐标为,或,.【点睛】本题考查的是一次函数的综合运用,涉及到三角形全等、轴对称的性质等知识点,其中(2)中,通过画图确定点、的位置是本题的难点.5、(1);(2)见解析;(3)A1(1,5),C1(4,3)【解析】【分析】(1)根据三角形面积公式进行计算即可得;(2)可以由三个顶点的位置确定,只要能分别画出这三个顶点关于y轴的对称点,连接这些对称点即可得;(3)根据(2)即可写出.【详解】解:(1)(2)如下图所示: (3)A1(1,5);C1(4,3)【点睛】本题考查了画轴对称图形,解题的关键是掌握画轴对称图形的方法.
相关试卷
这是一份数学第十四章 一次函数综合与测试同步达标检测题,共24页。试卷主要包含了已知点A等内容,欢迎下载使用。
这是一份初中第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了已知点等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后测评,共24页。试卷主要包含了下列命题中,真命题是,下列命题为真命题的是等内容,欢迎下载使用。