北京课改版八年级下册第十四章 一次函数综合与测试课后作业题
展开
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后作业题,共24页。试卷主要包含了若直线y=kx+b经过第一等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是( )A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)2、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).A.-2 B.2C.4 D.﹣43、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、下面关于函数的三种表示方法叙述错误的是( )A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C.用解析式法表示函数关系,可以方便地计算函数值D.任何函数关系都可以用上述三种方法来表示5、如图,已知直线y=kx+b和y=mx+n交于点A(﹣2,3),与x轴分别交于点B(﹣1,0)、C(3,0),则方程组的解为( )A. B. C. D.无法确定6、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)7、若直线y=kx+b经过第一、二、三象限,则函数y=bx﹣k的大致图象是( )A. B. C. D.8、下列关于变量x,y的关系,其中y不是x的函数的是( )A. B.C. D.9、一次函数y=kx+b(k≠0)的图象如图所示,当x>2时,y的取值范围是( )A.y<0 B.y>0 C.y<3 D.y>310、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )A.乙比甲提前出发1h B.甲行驶的速度为40km/hC.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知函数y=,那么自变量x的取值范围是_________.2、直线y2x3与x轴的交点坐标是______,与y轴的交点坐标是______.3、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A(1,3)、B(3,1),则轰炸机C的坐标是_________.4、如果正比例函数y=(k﹣2)x的图象经过第二、四象限,那么k的取值范围是 _____.5、如果点P(m+3,2m﹣4)在y轴上,那么m的值是 _____.三、解答题(5小题,每小题10分,共计50分)1、小美打算在“母亲节”买一束百合和康乃馨组合的鲜花送给妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.(1)求买一支康乃馨和一支百合各需多少元?(2)小美准备买康乃馨和百合共11支,且康乃馨不多于9支,设买康乃馨x支,买这束鲜花所需总费用为w元.①求w与x之间的函数关系式;②请你帮小美设计一种使费用最少的买花方案,并求出最少费用.2、如图,已知O为坐标原点,B(0 ,3),OB=CD,且OD=2OC,将△BOC沿BC翻折至△BEC,使得点E、O重合,点M是y轴正半轴上的一点且位于点B上方,以点B为端点作一条射线BA,使∠MBA=∠BCO,点F是射线BA上的一点.(1)请直接写出C、D两点的坐标:点C ,点D ;(2)当BF=BC时,连接FE.①求点F的坐标;②求此时△BEF的面积.3、甲、乙两人沿同一直道从A地去B地,甲比乙早1min出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离y1(单位:m)与时间x(单位:min)之间的函数关系如图所示.(1)求乙离A地的距离y2(单位:m)与时间x(单位:min)之间的函数关系式;并在图中画出乙离A地的距离y2(单位:m)与时间x(单位:min)之间的函数图象;(2)若甲比乙晚5min到达B地,求乙整个行程所用的时间.4、如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB.(1)求这两个函数的表达式;(2)求两直线与y轴围成的三角形的面积.5、已知直线l1:y=-x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交与点C,且C点的横坐标为1.(1)求直线l1的解析式;(2)过点A作x轴的垂线,若点P为垂线上的一个动点,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时点P的坐标;(3)E点的坐标为(﹣2,0),将直线l1绕点C顺时针旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标;若不存在,请说明理由. -参考答案-一、单选题1、A【解析】【分析】根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断【详解】解:由题意可知,点P在第一象限,且横坐标大于纵坐标,A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;B.(﹣4,2)在第二象限,故本选项符合题意;C.(﹣4,﹣2)在第三象限,故本选项符合题意;D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;故选:A.【点睛】本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.2、B【解析】【分析】当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.【详解】解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,∵|k|越大,它的图象离y轴越近,∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.故选:B.【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.3、D【解析】【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点A(x,5)在第二象限,∴x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、D【解析】【分析】根据函数三种表示方法的特点即可作出判断.【详解】前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的. 故选:D【点睛】本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.5、A【解析】【分析】根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.【详解】解:由图象及题意得:∵直线y=kx+b和y=mx+n交于点A(﹣2,3),∴方程组的解为.故选:A.【点睛】本题主要考查一次函数与二元一次方程组的解,熟练掌握一次函数的图象与性质是解题的关键.6、A【解析】【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,且,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,∴,即,故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.7、D【解析】【分析】直线y=kx+b,当时,图象经过第一、二、三象限;当时,图象经过第一、三、四象限;当时,图象经过第一、二、四象限;当时,图象经过第二、三、四象限.【详解】解:直线y=kx+b经过第一、二、三象限,则,时,函数y=bx﹣k的图象经过第一、三、四象限,故选:D.【点睛】本题考查一次函数的图象与性质,是重要考点,掌握相关知识是解题关键.8、D【解析】【详解】解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;故选:D.【点睛】本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.9、A【解析】【分析】观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x>2时,y<0.【详解】∵一次函数y=kx+b(k≠0)与x轴的交点坐标为(2,0),∴y随x的增大而减小,∴当x>2时,y<0.故选:A.【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为.10、C【解析】【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;C、乙行驶的速度为 ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;D、; ∴0.75h或1.125h时,乙比甲多行驶10km,∴选项D说法正确,不符合题意.故选C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答二、填空题1、【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,,解得,,故答案为:.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.2、 (,0)##(1.5,0) (0,﹣3)【解析】【分析】分别根据x、y轴上点的坐标特点进行解答即可.【详解】令y=0,则2x﹣3=0,解得:x,故直线与x轴的交点坐标为:(,0);令x=0,则y=﹣3,故直线与y轴的交点坐标为:(0,﹣3).故答案为(,0),(0,﹣3).【点睛】本题考查了x、y轴上点的坐标特点及一次函数图象的性质,熟练掌握一次函数与坐标轴交点问题是解题的关键.3、【解析】【分析】直接利用已知点坐标得出原点位置,进而得出答案.【详解】解:如图所示,建立平面直角坐标系,∴轰炸机C的坐标为(-1,-2),故答案为:(-1,-2).【点睛】此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键..4、【解析】【分析】根据正比例函数的性质列不等式求解即可.【详解】解:∵正比例函数y=(k﹣2)x的的图象经过第二、四象限,∴k﹣2<0,解得,k<2.故填:k<2.【点睛】本题主要考查了正比例函数的性质、正比例函数的图象等知识点,根据正比例函数图象所在的象限列出不等式是解答本题的关键.5、-3【解析】【分析】点P在y轴上则该点横坐标为0,可解得m的值.【详解】解:在y轴上,∴m+3=0,解得m=-3.故答案为:-3.【点睛】本题主要考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.三、解答题1、(1)买一支康乃馨需4元,买一支百合需5元;(2)①w=﹣x+55;②买9支康乃馨,买2支百合费用最少,最少费用为46元.【解析】【分析】(1)设买一支康乃馨需m元,买一支百合需n元,根据题意列方程组求解即可;(2)根据康乃馨和百合的费用之和列出函数关系式,然后根据函数的性质和康乃馨不多于9支求函数的最小值即可.【详解】解:(1)设买一支康乃馨需m元,买一支百合需n元, 则根据题意得:,解得: ,答:买一支康乃馨需4元,买一支百合需5元; (2)①根据题意得:w=4x+5(11﹣x)=﹣x+55,②∵康乃馨不多于9支,∴x≤9,∵﹣1<0,∴w随x的增大而减小,∴当x=9时,w最小, 即买9支康乃馨,买11﹣9=2支百合费用最少,wmin=﹣9+55=46(元),答:w与x之间的函数关系式:w=﹣x+55,买9支康乃馨,买2支百合费用最少,最少费用为46元.【点睛】本题主要考查一次函数的性质和二元一次方程组的应用,关键是利用题意写出函数关系式.2、(1)(-1 ,0),(2 ,0);(2)①F(-3 ,4);②.【解析】【分析】(1)由B(0 ,3)知OB=3,由OB=CD,且OD=2OC,知OC=1,OD=2,据此求解即可;(2)①过点F作FP⊥轴于点P,利用AAS证明△FPB≌△BOC即可求解;②过点F作FQ⊥BE于点Q,证明FB是∠PBE的角平分线,利用角平分线的性质求解即可.【详解】解:(1)∵B(0 ,3),∴OB=3,∵OB=CD,且OD=2OC,∴OC=1,OD=2,∴C(-1 ,0),D(2 ,0);故答案为:(-1 ,0),(2 ,0);(2)①过点F作FP⊥轴于点P,∵∠PBF=∠BCO,BF=BC,又∠FPB=∠BOC=90°,∴△FPB≌△BOC(AAS),∴FP=BO=3,PB= OC=1,∴PO=4,∴F(-3 ,4);②过点F作FQ⊥BE于点Q,∵∠CBO+∠BCO=90°,∠PBF=∠BCO,∴∠CBO+∠PBF=90°,则∠CBF=90°,由折叠的性质得:∠EBC=∠OBC,EB=BO=3,∴∠EBC +∠EBF=90°,∴∠EBF=∠PBF,即FB是∠PBE的角平分线,又FQ⊥BE,FP⊥轴,∴FQ= FP=3,∴△BEF的面积为BEFQ=.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,角平分线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.3、(1)乙离A地的函数解析式为:,函数图象见详解;(2)甲整个行程所用的时间为.【解析】【分析】(1)根据甲乙的速度关系和甲比乙提前一分钟出发即可确定乙的函数图象经过两个点,点,点,设,将两个点代入求解即可确定函数解析式,连接两个点作图即可得函数图象;(2)设甲整个行程所用的时间为x ,由(1)可得:甲的速度为,乙的速度为,利用甲乙的路程相同建立方程,求解即可.【详解】解:(1)由图可得:甲的速度为:,∵乙的速度是甲速度的两倍,∴乙的速度为:,乙比甲晚出发,∴乙经过点,点,设,将两个点代入可得:,解得:,,∴乙离A地的函数解析式为:,连接点,点并延长即可得函数图象,如图所示即为所求; (2)设甲整个行程所用的时间为x,由(1)可得:甲的速度为,乙的速度为,∴,解得:,∴甲整个行程所用的时间为.【点睛】本题考查了一次函数的实际应用,根据问题情境绘制出函数图像,建立相等关系,列出方程是解题关键.4、(1),;(2)【解析】【分析】(1)由点A的坐标及勾股定理即可求得OA与OB的长,从而可得点B的坐标,用待定系数法即可求得函数的解析式;(2)由点A的坐标及OB的长度即可求得△AOB的面积.【详解】∵A(4,3)∴OA=OB==5,∴B(0,-5),设直线OA的解析式为y=kx,则4k=3,k=,∴直线OA的解析式为,设直线AB的解析式为,把A、B两点的坐标分别代入得:,∴,∴直线AB的解析式为y=2x-5.(2).【点睛】本题考查了待定系数法求一次函数的解析式,直线与坐标轴围成的三角形面积等知识,本题重点是求一次函数的解析式.5、(1);(2)点的坐标;(3)点的坐标为或,或.【解析】【分析】(1)当时,,即点的坐标为,将点的坐标代入直线得:,解得:,即可求解;(2)确定点的对称点、点的对称点,连接,此时,的值最小,即可求解;(3)①当点在直线上方,画出图形,证明,利用,,即可求解.②当点在直线下方时,同①的方法即可得出结论.③如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得结论.【详解】解:(1)当时,,即点的坐标为,将点的坐标代入直线得:,解得:,故:直线的解析式为:;(2)确定点关于过点垂线的对称点、点关于轴的对称点,连接交过点的垂线与点,交轴于点,此时,的值最小,如图所示:将点、点的坐标代入一次函数表达式:得:,解得:,则直线的表达式为:,当时,,即点的坐标为,的值,即:当的值最小为时,此时点的坐标;(3)将、点坐标代入一次函数表达式,同理可得其表达式为①当点在直线上方时,设点,点,点,过点、分别作轴的平行线交过点与轴的平行线分别交于点、,,,,,,,,,即,解得.故点的坐标为,②当点在下方时,如图1,过点作轴,与过点作轴的平行线交于,与过点作轴的平行线交于,同①的方法得,,③如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得 即:点的坐标为,或,.【点睛】本题考查的是一次函数的综合运用,涉及到三角形全等、轴对称的性质等知识点,其中(2)中,通过画图确定点、的位置是本题的难点.
相关试卷
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后复习题,共23页。试卷主要包含了点A个单位长度.,一次函数的一般形式是,变量,有如下关系,直线y=2x-1不经过的象限是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题,共24页。试卷主要包含了函数y=的自变量x的取值范围是,直线y=2x-1不经过的象限是,点P的坐标为,已知一次函数y=ax+b,若一次函数y=kx+b等内容,欢迎下载使用。
这是一份2021学年第十四章 一次函数综合与测试课后练习题,共22页。试卷主要包含了若一次函数y=kx+b,一次函数y=等内容,欢迎下载使用。