初中数学北京课改版八年级下册第十四章 一次函数综合与测试课堂检测
展开
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课堂检测,共24页。试卷主要包含了直线y=2x-1不经过的象限是等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A.正东方向 B.正西方向 C.正南方向 D.正北方向2、点P的坐标为(﹣3,2),则点P位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、变量,有如下关系:①;②;③;④.其中是的函数的是( )A.①②③④ B.①②③ C.①② D.①4、关于函数有下列结论,其中正确的是( )A.图象经过点B.若、在图象上,则C.当时,D.图象向上平移1个单位长度得解析式为5、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是( )A. B.C. D.6、若直线y=kx+b经过A(0,2)和B(3,-1)两点,那么这个一次函数关系式是( )A.y=2x+3 B.y=3x+2 C.y=-x+2 D.y=x-17、直线y=2x-1不经过的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是( )A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)9、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A.①②③ B.①②④ C.③④ D.①③④10、已知一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,则该函数图象所经过的象限为( )A.一、二、三 B.二、三、四 C.一、三、四 D.一、二、四第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知函数y=,那么自变量x的取值范围是_________.2、一次函数与的图象如图所示,则关于、的方程组的解是______.3、已知直线y=ax﹣1与直线y=2x+1平行,则直线y=ax﹣1不经过第 ___象限.4、已知一次函数的图象与两坐标轴围成的三角形面积为4,则______.5、(1)由于任何一元一次方程都可转化为____(k,b为常数,k≠0)的形式.所以解一元一次方程可以转化为当一次函数y=kx+b(k≠0)的值为_____时,求相应的_____的值.(2)一元一次方程kx+b=0的解,是直线y=kx+b与____轴交点的____坐标值.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系xoy中,的顶点O是坐标原点,点A在第一象限,点B在x轴的正半轴上,且,,点C是直线OC上一点,且在第一象限,,满足关系式.(1)请直接写出点A的坐标;(2)点P是线段OB上的一个动点(点P不与点O重合),过点P的直线l与x轴垂直,直线l交边或边AB于点Q,交OC于点R.设点P的横坐标为t,线段QR的长度为m.当时,直线l恰好过点C.①求直线OC的函数表达式;②当时,请直接写出点P的坐标;③当直线RQ与直线OC所组成的角被射线RA平分时,请直接写出t的值.2、已知A、B两地之间有一条公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲车的速度为 千米/时,a的值为 .(2)求乙车出发后,y与x之间的函数关系式.3、为响应政府号召,某地水果种植户借助电商平台,在线下批发的基础上同步在电商平台上零售水果.已知线上零售40千克,线下批发80千克水果共获得4000元;线上零售60千克和线下批发80千克水果销售额相同.(1)求线上零售和线下批发水果的单价分别为每千克多少元?(2)若该地区水果种植户张大叔某月线上零售和线下批发共销售水果2000千克,设线上零售m千克.获得的总销售额为w元.①求w与m之间的函数关系式;②若总销售额为70000元,则线上零售量为多少千克?4、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)在上升或下降过程中,无人机的速度为多少?(2)图中a表示的数是 ;b表示的数是 ;(3)无人机在空中停留的时间共有 分钟.5、【直观想象】如图1,动点P在数轴上从负半轴向正半轴运动,点P到原点的距离先变小再变大,当点P的位置确定时,点P到原点的距离也唯一确定;【数学发现】当一个动点到一个定点的距离为d,我们发现d是x的函数;【数学理解】动点到定点的距离为d,当 时,d取最小值;【类比迁移】设动点到两个定点、的距离和为y.①尝试写出y关于x的函数关系式及相对应的x的取值范围;②在给出的平面直角坐标系中画出y关于x的函数图像;③当y>9时,x的取值范围是 . -参考答案-一、单选题1、B【解析】【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.2、B【解析】【分析】根据平面直角坐标系中四个象限中点的坐标特点求解即可.【详解】解:∵点P的坐标为(﹣3,2),∴则点P位于第二象限.故选:B.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.3、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.【详解】解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;④,当时,,则y不是x的函数;综上,是函数的有①②③.故选:B.【点睛】本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.4、D【解析】【分析】根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项.【详解】解:A、当x=-1时,则有y=-2×(-1)-2=0,故点不在一次函数的图象上;不符合题意;B、∵,∴y随x的增大而减小,若、在图象上,则有,即,故不符合题意;C、当y=0时,则有-2x-2=0,解得x=-1,所以当x>-1时,y<0,则当时,,故不符合题意;D、图象向上平移1个单位长度得解析式为,正确,故符合题意;故选D.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.5、C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤、<x≤、<x≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=小时, B车到达甲地时间为120÷90=小时,A车到达乙地时间为120÷60=2小时,∴当0≤x≤时,y=120-60x-90x=-150x+120;当<x≤时,y=60(x-)+90(x-)=150x-120;当<x≤2是,y=60x;由函数解析式的当x=时,y=150×-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.6、C【解析】【分析】把两点的坐标代入函数解析式中,解二元一次方程组即可求得k与b的值,从而求得一次函数解析式.【详解】解:由题意得:解得:故所求的一次函数关系为故选:C.【点睛】本题考查了用待定系数法求一次函数的解析式,其一般步骤是:设函数解析式、代入、求值、求得解析式.7、B【解析】【分析】根据一次函数的图象特点即可得.【详解】解:一次函数的一次项系数,常数项,直线经过第一、三、四象限,不经过第二象限,故选:B.【点睛】本题考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键.8、A【解析】【分析】根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断【详解】解:由题意可知,点P在第一象限,且横坐标大于纵坐标,A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;B.(﹣4,2)在第二象限,故本选项符合题意;C.(﹣4,﹣2)在第三象限,故本选项符合题意;D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;故选:A.【点睛】本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.9、D【解析】【分析】根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;隧道长是:45×30-150=1200(米),故④正确.故选:D.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.10、D【解析】【分析】根据题意画出函数大致图象,根据图象即可得出结论.【详解】解:如图,∵一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,∴该函数图象所经过一、二、四象限,故选:D.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键.二、填空题1、【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,,解得,,故答案为:.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.2、【解析】【分析】根据一次函数与的图象可知交点的横坐标为,将代入即可求得纵坐标的值,则的值即可为方程组的解【详解】解:∵一次函数与的图象交点的横坐标为,∴当,是方程组的解故答案为:【点睛】本题考查了两直线的交点与二元一次方程组的解,数形结合是解题的关键.3、二【解析】【分析】根据两直线平行一次项系数相等,求出a,即可判断y=ax﹣1经过的象限.【详解】解:∵直线y=ax﹣1与直线y=2x+1平行,∴ a=2,∴直线y=ax﹣1的解析式为y=2x﹣1∴直线y=2x﹣1 ,经过一、三、四象限,不经过第二象限;故答案为:二.【点睛】本题考查了一次函数图象的性质与系数之间的关系,两直线平行一次项系数相等是解题的关键.4、2或-2##-2或2【解析】【分析】由函数解析式确定与x轴的交点坐标为,与y轴的交点坐标为(0,4),然后根据函数图象与坐标轴的面积为4列出方程求解即可.【详解】解:∵在中,当时,;当时,,∴的图象与x轴的交点坐标为,与y轴的交点坐标为(0,4),由题意可得:,解得:.故答案为:2或-2.【点睛】题目主要考查一次函数解析式的确定及其与坐标轴围成面积的计算方法,理解题意,得出方程是解题关键.5、 kx+b=0 0 自变量 x 横【解析】【分析】(1)根据一次函数与x轴交点横坐标与一元一次方程的关系解答;(2)根据一次函数与x轴交点横坐标与一元一次方程的关系解答;【详解】解:(1)由于任何一元一次方程都可转化为kx+b=0 (k,b为常数,k≠0)的形式.所以解一元一次方程可以转化为当一次函数y=kx+b(k≠0)的值为0时,求相应的自变量的值.故答案为:kx+b=0,0,自变量;(2)一元一次方程kx+b=0的解,是直线y=kx+b与x轴交点的横坐标值.故答案为:x,横.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b,确定它与x轴的交点的横坐标的值.三、解答题1、(1)(3,3);(2)①直线OC的函数表达式为;②点P坐标为(,0)或(,0);③t的值为,或【解析】【分析】(1)过A作AD⊥x轴于点D,根据等腰直角三角形的性质得出OD=OA=3,即可得到A坐标为(3,3),;(2)①由,且,可得OC=,在中,利用勾股定理求得BC的值,即可得到点C坐标,设出直线OC的函数表达式为y=kx,把(6,2)代入 求出k的值,即可得到直线OC的函数表达式;②先求出直线AB的解析式,由题意点得P(t,0),Q(t,t)或(t,),R(t,),列出方程,即可求得点P坐标;③先求出点H的坐标为(,),再根据面积法求出,最后分两种情况讨论即可.【详解】(1)过A作AD⊥x轴于点D,∵OB=6,OA=AB,∠OAB=90°,∴AD平分∠OAB,且OD=BD=3,∴∠OAD=∠AOD=45°,∴OD=DA=3,∴A坐标为(3,3),故答案为:(3,3);(2)①∵,且,∴OC=,当时,点P坐标为(6,0),∵直线l恰好过点C,,,,点C坐标为(6,2),设直线OC的函数表达式为y=kx,把(6,2)代入,得:6k=2,解得,故直线OC的函数表达式为;②设直线OC与直线AB交于点H,直线AB的解析式为,∴,∴,∴直线AB的解析式为,∵点P的横坐标为t,点R在直线上,∴点P(t,0),Q(t,t)或(t,),R(t,),∵线段QR的长度为m,∴或当时,或 解得:或或 故点P坐标为(,0)或(,0)或(,0);③∵直线AB的解析式为,联立,解得,∴点H的坐标为(,),∴,,,∵,∴,过点A作AM⊥直线l,AN⊥直线OC,如图:或则:AM=,∵直线RQ与直线OC所组成的角被射线RA平分,AM=AN,即=,解得或,故t的值为或.【点睛】此题考查等腰直角三角形的性质、求一次函数函数解析式、角平分线的性质、点到直线的距离、勾股定理的应用.作出相应的图形,分类讨论是解答此题的关键.2、(1)40;480;(2)y=100x-120【解析】【分析】(1)根据图象可知甲车行驶2行驶所走路程为80千米,据此即可求出甲车的速度;进而求出甲车行驶6小时所走的路程为240千米,根据两车同时到达各自的目的地可得a=240×2=480;(2)运用待定系数法解得即可;【详解】解:(1)由题意可知,甲车的速度为:80÷2=40(千米/时);a=40×6×2=480,故答案为:40;480;(2)设y与x之间的函数关系式为y=kx+b,由图可知,函数图象经过(2,80),(6,480),∴,解得,∴y与x之间的函数关系式为y=100x-120;【点睛】本题考查了从函数图象获取信息,以及待定系数法求一次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.3、(1)线上零售水果的单价为每千克40元,线下批发的单价为每千克30元;(2)①;②线上零售量为到1000千克.【解析】【分析】(1)设线上零售水果的单价为每千克x元,线下批发的单价为每千克y元,根据题意列出二元一次方程组求解即可;(2)①由题意可得:线上零售m千克,则线下批发千克,利用销售数量、单价、销售总价的关系即可得;②当时,代入①结论求解即可得.【详解】解:(1)设线上零售水果的单价为每千克x元,线下批发的单价为每千克y元,由题意得:,解得:,∴线上零售水果的单价为每千克40元,线下批发的单价为每千克30元;(2)①由题意可得:线上零售m千克,则线下批发千克, ,即函数关系式为:;②由(1)可得:当时,,解得:,∴线上零售量为到1000千克.【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应的方程及函数解析式是解题关键.4、(1)无人机的速度为25米/分;(2)2;15;(3)9.【解析】【分析】(1)根据无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,进行求解即可;(2)根据(1)中求得的结果,由路程=速度×时间进行求解即可;(3)根据函数图像可知无人机空中停留的分为第a-6分钟和第7-12分钟,由此求解即可.【详解】解:(1)∵无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,∴无人机的速度为75-50=25米/分;(2)由题意得:,,故答案为:2,15;(3)由题意得:无人机停留的时间=6-2+12-7=9分钟,故答案为:9【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够正确读懂函数图像.5、(数学理解)5;(类比迁移)①;②见解析;③或.【解析】【分析】(数学理解)当点A、P重合时,d=0最小,据此解题;(类比迁移)①分三种情况,分别写出相应函数解析式,再画图,即可解题;②在坐标系中描点,连线即可画图;③利用图象,分类讨论解题.【详解】解:(数学理解)当点A、P重合时,d=0最小,此时x=5,故答案为:5;(类比迁移)①由题意得,当时,当时,当时,,;②画图如下,;③由图象得,当y>9时,有两种情况:或解得或故答案为:或.【点睛】本题考查一次函数综合题,考查函数、函数图象等知识,是重要考点,掌握相关知识是解题关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试随堂练习题,共29页。试卷主要包含了已知点A,点P的坐标为等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共22页。试卷主要包含了点在第四象限,则点在第几象限,点在,正比例函数y=kx的图象经过一等内容,欢迎下载使用。
这是一份初中北京课改版第十四章 一次函数综合与测试综合训练题,共28页。试卷主要包含了直线y=2x-1不经过的象限是等内容,欢迎下载使用。