搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练京改版八年级数学下册第十七章方差与频数分布专题训练试题(含答案解析)

    2022年强化训练京改版八年级数学下册第十七章方差与频数分布专题训练试题(含答案解析)第1页
    2022年强化训练京改版八年级数学下册第十七章方差与频数分布专题训练试题(含答案解析)第2页
    2022年强化训练京改版八年级数学下册第十七章方差与频数分布专题训练试题(含答案解析)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课堂检测

    展开

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课堂检测,共22页。试卷主要包含了一组数据1,2020年某果园随机从甲等内容,欢迎下载使用。
    京改版八年级数学下册第十七章方差与频数分布专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为188cm的队员换下场上身高为194cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小 D.平均数变大,方差变大2、下列说法正确的是(   A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶,出现一次故障”是随机事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差大的更稳定3、若样本的平均数为10,方差为2,则对于样本,下列结论正确的是(    A.平均数为30,方差为8 B.平均数为32,方差为8C.平均数为32,方差为20 D.平均数为32,方差为184、年将在北京--张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,选手成绩更稳定的是( )A.甲 B.乙 C.都一样 D.不能确定5、一组数据1、2、2、3中,加入数字2,组成一组新的数据,对比前后两组数据,变化的是(    A.平均数 B.中位数 C.众数 D.方差6、2020年某果园随机从甲、乙、丙、丁四个品种的苹果树上各采摘了10棵.每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如下表所示: 25252421s22.22.02.12.0今年准备从这四个品种中选出一种产量既高又稳定的苹果树进行种植.应选的品种是(    A.甲 B.乙 C.丙 D.丁7、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:测试者平均成绩(单位:m)方差6.20.256.00.585.80.126.20.32若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选(    A.甲 B.乙 C.丙 D.丁8、甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选(     平均数90959590方差32324449A.甲 B.乙 C.丙 D.丁9、某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是(   
    A.90分以上的学生有14名 B.该班有50名同学参赛C.成绩在70~80分的人数最多 D.第五组的百分比为16%10、在频数分布表中,所有频数之和(    A.是1 B.等于所有数据的个数C.与所有数据的个数无关 D.小于所有数据的个数第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据的平均数是4,则这组数据的方差是_________.2、某校九年级进行了3次体育中考项目—1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是=0.01,=0.009,=0.0093.则甲、乙、丙三位同学中成绩最稳定的是________.3、某果农随机从甲、乙、丙三个品种的批把树中各选5棵,每棵产量的平均数(单位:千克)及方差(单位:千克2)如表所示,他准备从这三个品种中选出一种产量既高又稳定的批把树进行种植,则应选的品种是 __.  454542S21.82.31.8 4、已知一组数据abcde的方差为,则新的数据2a﹣1、2b﹣1、2c﹣1、2d﹣1、2e﹣1的方差是 ______.5、一组数据6,2,1,3的极差为__________.三、解答题(5小题,每小题10分,共计50分)1、某中学开展歌咏比赛,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,复赛成绩(满分为100分)如图所示. (1)根据图示填写表格:班级平均数(分)中位数(分)众数(分)九(1) 85 九(2)85 100(2)已知九年级(2)班复赛成绩的方差为160,计算九年级(1)班复赛成绩的方差,并分析哪个班的复赛成绩稳定.2、某校对七年级学生进行“综合素质”评价,评价的结果分为ABCD四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制了两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)B等级人数所占百分比是     C等级所在扇形的圆心角是     度;(2)请补充完整条形统计图;(3)若该校七年级学生共1000名,请根据以上调查结果估算:评价结果为A等级或B等级的学生共有     名.3、为了迎接2022年高中招生考试,师大附中外国语学校对全校八年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给出的信息,解答下列问题:(1)在这次调查中,被抽取的学生的总人数为多少?(2)请将表示成绩类别为“中”的条形统计图补充完整:(3)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角的度数是             (4)学校八年级共有400人参加了这次数学考试,把成绩类别“优”与“中”的划成“上线生”,估计该校八年级共有多少名学生的数学成绩能“上线”?4、本校将学生体质健康测试成绩分为ABCD四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.(1)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数;本校部分学生体质健康测试成绩统计图(2)本校规定达到3分才算合格. 已知本校共有学生1600人,根据以上数据估计本校学生体质健康测试成绩达到合格的人数;(3)为了更好贯彻落实健康第一的指导思想,请你根据以上数据对本校体育老师提出一条合理的建议.5、在第二十二届深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图.请根据相关信息,解答下列问题:(1)该校抽查八年级学生的人数为            ,图中的值为            (2)请将条形统计图补充完整;(3)求被抽查的学生每天平均课外阅读时间的众数、中位数和平均数;(4)根据统计的样本数据,估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有多少人? -参考答案-一、单选题1、A【分析】由题意分别计算出原数据和新数据的平均数和方差进行比较即可得出答案.【详解】解:原数据的平均数为则原数据的方差为×[(180-188)2+(184-188)2+(188-188)2+(190-188)2+(192-188)2+(194-188)2]= 新数据的平均数为则新数据的方差为×[(180-187)2+(184-187)2+(188-187)2+(190-187)2+(188-187)2+(192-187)2]= 所以平均数变小,方差变小,
    故选:A【点睛】本题主要考查方差和平均数,一般地设n个数据,x1x2,…xn的平均数为x,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2、B【分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.【详解】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;故选:B【点睛】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.3、D【分析】由样本的平均数为10,方差为2,可得再利用平均数公式与方差公式计算的平均数与方差即可.【详解】解: 样本的平均数为10,方差为2, 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.4、A【分析】分别计算计算出甲乙选手的方差,根据方差越小数据越稳定解答即可.【详解】解:甲选手平均数为:乙选手平均数为:甲选手的方差为:乙选手的方差为: ∵可得出:则甲选手的成绩更稳定,故选:A.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、D【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得:原来的平均数为加入数字2之后的平均数为∴平均数没有发生变化,故A选项不符合题意;原数据处在最中间的两个数为2和2,∴原数据的中位数为2,把新数据从小到大排列为1、2、2、2、3,处在最中间的数是2,∴新数据的中位数为2,故B选项不符合题意;原数据中2出现的次数最多,∴原数据的众数为2,新数据中2出现的次数最多,∴新数据的众数为2,故C选项不符合题意;原数据的方差为新数据的方差为∴方差发生了变化,故D选项符合题意;故选D.【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.6、B【分析】首先比较平均数,平均数较高的是甲和乙,进而根据方差比较选出方差较小的即可.【详解】根据表格可知甲、乙的平均数较高,则表示产量高,比较甲、乙的方差,乙的方差比甲小,则乙品种的苹果树产量高又稳定,故选B.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.7、A【分析】首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定【详解】解:∵∴应在甲和丁之间选择,甲和丁的平均成绩都为6.2,甲的方差为0.25,丁的方差为0.32,甲的成绩好且发挥稳定,故应选甲,故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.8、B【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.【详解】解:由于乙的方差较小、平均数较大,故选乙.故选:B.【点睛】本题考查了平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9、A【分析】从条形图可得:90分以上的学生有8名,再求解第五组的占比与总人数,再利用频数与频率的含义逐一判断各选项即可得到答案.【详解】解:由条形图可得:90分以上的学生有8名,故符合题意;由条形图可得第五组的占比为: 第五组的频数是8, 总人数为:人,故不符合题意;成绩在70~80分占比,所以人数最多,故不符合题意;故选:【点睛】本题考查的是从条形图中获取信息,频数与频率的含义,理解频数与频率的含义是解题的关键.10、B【分析】根据频数与频率的关系,审清题意频数之和等于所有数据的个数,频率之和等于1,即可得解.【详解】A. 频数分布表中,所有频率之和是1,故选项A不正确    B. 频数之和等于所有数据的个数,故选项B正确;C. 在频数分布表中,所有频数之和与所有数据的个数有关    ,故选项C不正确;D. 在频数分布表中,所有频数之和等于所有数据的个数,故选项D不正确.故选择B.【点睛】本题考查频数分布表中的频数与频率问题,频数之和等于总数,频率之和等于1,注意区分是解题关键.二、填空题1、【分析】先根据平均数的定义求出x的值,再利用方差的定义列式计算即可.【详解】解:因为数据4,3,6,x的平均数是4,
    可得:
    解得:x=3,
    方差为:=故答案为:【点睛】本题主要考查方差及算术平均数,解题的关键是掌握方差和平均数的定义.2、乙【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵s2=0.01,s2=0.009,s2=0.0093,s2s2s2∴甲、乙、丙三位同学中成绩最稳定的是乙.故答案为:乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3、甲【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.4、【分析】根据方差的变化规律即可得出答案,即当数据都减去一个数时,方差不变,当乘以一个数时,方差变成这个数的平方倍.【详解】解:∵数据abcde的方差是1.2,∴数据2a−1、2b−1、2c−1、2d−1、2e−1的方差是22×1.2=4.8.故答案为:4.8.【点睛】本题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当乘以一个数时,方差变成这个数的平方倍.5、5【分析】根据极差的概念,求解即可,一组数据的最大值与最小值的差为极差.【详解】解:根据极差的定义可得,这组数据的极差为故答案为【点睛】此题考查了极差的求解,解题的关键是掌握极差的定义.三、解答题1、(1)九(1)班平均数为85,众数为85,九(2)班中位数为80;(2)70;(3)九年级(1)班复赛成绩的方差为70,九(1)班的方差小,成绩更稳定些.【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数、众数的定义和平均数的求法即可得答案;(2)根据方差公式计算可得九年级(1)班复赛成绩的方差,根据平均数相同,方差越小,成绩越稳定即可得答案.【详解】(1)由图可知:九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、75、80、100、100,九(1)班的平均数为(75+80+85+85+100)÷5=85,∵九(1)班的5个成绩中,85出现2次,∴九(1)的众数为85,∵九(2)班的5个成绩中,中间的数是80,∴九(2)班的中位数为80,填表如下: 平均数(分)中位数(分)众数(分)九(1)858585九(2)8580100(2)∵九(1)班平均数为85,∴九(1)班方差s12=[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,∵九(2)班的方差为160,70<160,∴九(1)班的成绩更稳定些.【点睛】本题考查平均数、中位数、众数及方差,将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据叫做这组数据的中位数;如果数据个数是偶数,则中间两个数据的平均数称为这组数据的中位数;一组数据中,出现次数最多的数据称为这组数据的众数;方差越大,数据的波动越大;方差越小,数据的波动越小;熟练掌握相关定义及方差公式是解题关键.2、(1)25%;72;(2)见解析;(3)700.【分析】(1)先根据D等级人数及其所占百分比求出被调查的总人数,再由四个等级人数之和等于总人数求出B等级人数,最后用B等级人数除以总人数可得答案,再用360°乘以C等级人数所占比例可得答案;(2)根据(1)中计算结果可补全条形图;(3)用总人数乘以样本中AB等级人数和所占比例即可.【详解】解:(1)∵被调查的人数为4÷10%=40(人),B等级人数为40﹣(18+8+4)=10(人),B(良好)等级人数所占百分比是 ×100%=25%,在扇形统计图中,C(合格)等级所在扇形的圆心角度数是360°×=72°,故答案为:25%;72;(2)补全条形统计图如下:(3)估计评价结果为A(优秀)等级或B(良好)等级的学生共有1000×=700(人).故答案为:700.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.3、(1)50(人);(2)10(人),图形见详解;(3)72°.(4)160(人).【分析】(1)利用成绩为良的人数以及百分比求出总人数即可.
    (2)求出成绩为中的人数,画出条形图即可.
    (3)根据圆心角=360°×百分比即可.
    (4)先求出抽查中上线的百分比,用样本的百分比含量估计总体的数量解决问题即可.【详解】解:(1)总人数=22÷44%=50(人).
    (2)中的人数=50−10−22−8=10(人),
    条形图如图所示:

    (3)表示成绩类别为“优”的扇形所对应的圆心角的度数=360°×=72°,故答案为72°.
    (4)抽查中成绩类别“优”与“中”的划成“上线生”有10+10=20(人),∴抽查中成绩类别“优”与“中”的划成“上线生”百分比为:学校八年级共有400人参加了这次数学考试,估计该校八年级优秀人数为400×40%=160(人).【点睛】本题考查条形统计图和扇形统计图信息获取与处理,样本容量,扇形圆心角,补画条形统计图,用样本的百分比含量估计总体中的数量,解题的关键是掌握从条形统计图和扇形统计图中信息读取的能力.4、(1)平均数是2.75分、中位数是3分,众数是3分;(2)1000人;(3)(加强体育锻炼)答案不唯一.【分析】(1)根据平均数,众数及中位数的求法依次计算即可;(2)利用总人数乘以合格人数占抽查总人数的比例即可;(3)抓住健康第一,建议合理即可.【详解】解:(1)平均数为:抽查的120人中,成绩是3分出现的次数最多,共出现45次,因此众数是3分;将这120人的得分从小到大排列处在60,61两个位置的分数都是3分,因此中位数是3分;答:这组数据的平均数是2.75分,中位数是3分,众数是3分;(2)估计本校学生体质健康测试成绩达到合格的人数为:(人),∴估计本校学生体质健康测试成绩达到合格的人数为1000人;(3)加强体育锻炼(答案不唯一,合理即可).【点睛】题目主要考查从条形统计图获取信息,计算平均数,中位数,众数及利用部分估计整体,熟练掌握各个数据的计算方法是解题关键.5、(1)100,18;(2)见解析;(3)(4)72人【分析】(1)根据每天平均课外阅读时间为1小时的占30%,共30人,即可求得总人数;(2)根据总数减去其他三项即可求得每天平均课外阅读时间为1.5小时的人数进而补充条形统计图;(3)根据条形统计图可知阅读时间为1.5小时的人数最多,故学生每天平均课外阅读时间的众数为1.5,根据第50和51个都落在阅读时间为1.5小时的范围内,即可求得中位数为1.5,根据求平均数的方法,求得100个学生阅读时间的平均数(4)根据扇形统计图可知,每天平均课外阅读时间为2小时的比例为,400乘以18%即可求得.【详解】(1)总人数为:(人);故答案为:(2)每天平均课外阅读时间为1.5小时的人数为:(人)补充条形统计图如下:(3)根据条形统计图可知抽查的学生每天平均课外阅读时间的众数为1.5中位数为1.5,平均数为(4)(人)估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有【点睛】本题考查了条形统计图与扇形统计图信息关联,求众数、中位数和平均数,样本估算总体,从统计图中获取信息是解题的关键. 

    相关试卷

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共20页。试卷主要包含了篮球队5名场上队员的身高,新型冠状病毒肺炎,为考察甲等内容,欢迎下载使用。

    初中数学第十七章 方差与频数分布综合与测试课堂检测:

    这是一份初中数学第十七章 方差与频数分布综合与测试课堂检测,共20页。试卷主要包含了2020年某果园随机从甲等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试巩固练习:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试巩固练习,共21页。试卷主要包含了某校八年级人数相等的甲,一组数据1等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map