搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新京改版八年级数学下册第十七章方差与频数分布达标测试试卷(含答案详解)

    2021-2022学年最新京改版八年级数学下册第十七章方差与频数分布达标测试试卷(含答案详解)第1页
    2021-2022学年最新京改版八年级数学下册第十七章方差与频数分布达标测试试卷(含答案详解)第2页
    2021-2022学年最新京改版八年级数学下册第十七章方差与频数分布达标测试试卷(含答案详解)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学北京课改版第十七章 方差与频数分布综合与测试巩固练习

    展开

    这是一份数学北京课改版第十七章 方差与频数分布综合与测试巩固练习,共22页。
    京改版八年级数学下册第十七章方差与频数分布达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在一个样本中,40个数据分别落在5个小组内,第1,2,3,5小组的频数分别是6,5,15,7,则第4小组的频数是(   A.7 B.8 C.9 D.102、某厂质检部将甲,乙两人第一周每天生产合格产品的个数整理成两组数据,如表:根据数据表,说法正确的是(   2677823488A.甲、乙的众数相同 B.甲、乙的中位数相同C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差3、为了解某社区居民的用电情况,随机对该社区15户居民进行调查,下表是这15户居民2020年4月份用电量的调查结果:关于这15户居民月用电量(单位:度),下列说法错误的是(  )居民(户)5334月用电量(度/户)30425051A.平均数是43.25 B.众数是30C.方差是82.4 D.中位数是424、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:测试者平均成绩(单位:m)方差6.20.256.00.585.80.126.20.32若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选(    A.甲 B.乙 C.丙 D.丁5、甲、乙两人各射击5次,成绩如表.根据数据分析,在两人的这5次成绩中(  ) 成绩(单位:环)378810778910A.甲的平均数大于乙的平均数B.甲的中位数小于乙的中位数C.甲的众数大于乙的众数D.甲的方差小于乙的方差6、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是(    A. B. C. D.7、一组数据分别为abcde,将这组数据中的每个数都加上同一个大于0的常数,得到一组新的数据,则这组新数据的下列统计量与原数据相比,一定不发生变化的是(    A.中位数 B.方差 C.平均数 D.众数8、已知数据的平均数,方差,则数据的平均数和方差分别为(   A.5,12 B.5,6 C.10,12 D.10,69、甲、乙、丙、丁四个旅游团的游客人数都相等,且每个旅游团游客的平均年龄都是35岁,这四个旅游团游客年龄的方差分别,这四个旅游团中年龄相近的旅游团是(    A.甲团 B.乙团 C.丙团 D.丁团10、某手机公司新推出了四款新型手机,公司为了了解各款手机的性能,随机抽取了每款手机各50台进行测试,以下是四款手机的性能得分(满分100分,分数越高,性能越好)的平均分和方差,则这四款新型手机中性能好且稳定的是(     平均成绩(分)95989698方差3322A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、为了在甲、乙两位同学中选拔一人参加市电视台组织的成语听写大会,对他们的成语水平进行了10次跟踪测试.分析两人的成绩发现:=84, =83.2,=13.2, =26.36,由此学校决定让甲去参加比赛,理由是_______.2、七年级(5)班20名女生的身高如下(单位:cm): 153 156 152 158 156 160 163 145 152 153 162 153 165 150 157 153 158 157 158 158(1)请你在下表中填出身高在以下各个范围的频数,百分比(每个范围包含下限,但不包含上限):身高(cm)140~150150~160160~170频数   百分比   (2)上表把身高分成___组,组距是___;(3)身高在___范围的人数最多.3、甲、乙两名篮球运动员进行每组10次的投篮训练,5组投篮结束后,两人的平均命中数都是7次,方差分别是,则在本次训练中,运动员__________的成绩更稳定.4、对某班同学的身高进行统计(单位:厘米),频数分布表中,165.5-170.5这一组学生人数是12,频率是0.24,则该班共有________名学生;155.5-160.5这一组学生人数是8,频率是________.5、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _____.(填“变大”、“不变”或“变小”)三、解答题(5小题,每小题10分,共计50分)1、今年12月4日是第八个国家宪法日,宪法是国家的根本大法,是治国安邦的总章程.为贯彻落实习近平总书记关于宪法学习宣传教育的系列重要指示精神,某校开展了丰富多彩的宪法宣传教育活动,并分别在活动前后举办了有关学宪法的知识竞赛(百分制),活动结束后,在七年级随机抽取25名学生活动前后的竞赛成绩进行整理和描述,下面给出部分信息:活动后被抽取学生竞赛成绩为:82, 88, 96, 98, 84, 86, 89, 99, 94, 90, 79, 91, 99, 98, 87, 92, 86, 99, 98, 84, 93, 88, 94, 89, 98.活动后被抽取学生竞赛成绩频数分布表成绩x(分)频数(人)75≤x<80180≤x<85385≤x<90790≤x<95m95≤x<100n请你根据以上信息解决下列问题:(1)本次调查的样本容量是       ,表中m=      n=         (2)若想直观地反映出活动前后被抽取学生竞赛成绩的变化情况,应该把数据整理,绘制成        统计图;(填“扇形”“条形”或“折线”)(3)若90分及以上都属于A等级,根据调查结果,请估计该校2000名同学中活动后的竞赛成绩为A等级的学生有多少人?2、某县教育局组织了一次经典诵读比赛,中学组有两队各10人的比赛成绩如下表:78971010910101010879810109109(1)甲队成绩的中位数是          分,乙队成绩的众数是          分;(2)计算乙队的平均成绩;(3)如果要从两个队中选择一对参加市级比赛,你认为安排哪个队更容易获奖.3、重庆北关中学有甲,乙两个学生食堂,为了了解哪个食堂更受学生欢迎,学校开展了为期20天的的数据收集工作,统计初三年级每天中午分别到甲,乙食堂就餐的人数,现对收集到的数据进行整理、描述和分析(人数用x(人)表示,共分成四个等级,A:250<x≤300;B:200<x≤250;C:150<x≤200;D:100<x≤150),下面给出了部分信息:甲、乙食堂的人数统计表:食堂平均数211196中位数a215众数b230极差188c甲食堂20天的所有人数数据为:112,125,138,146,168,177,177,177,185,218,230,234,241,246,249,260,260,279,298,300乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260请根据相关信息,回答以下问题:(1)填空:a     b     c     ,并补全乙食堂的人数数据条形统计图:(2)根据以上数据,请判断哪个食堂的更受同学们欢迎,并说明理由(一条即可);(3)已知该校初三年级共有学生400人,全校共有学生1600人,请估算北关中学甲食堂每天中午大约准备多少名同学的午餐?4、为提升学生的艺术素养,学校计划开设四门艺术选修课:A:书法;B,绘画;C,乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),将数据进行整理,并绘制成如图两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)木次调查的学生共有    人,扇形统计图中∠α的度数是    (2)请把条形统计图补充完整.5、在疫情防控期间,某市防控指挥部想了解各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们志愿服务的时间进行了统计,整理并绘制成如下的统计表和不完整的统计图.AaB10C16D20(1)本次被抽取的教职工共有            名;(2)表中a =         ,扇形统计图中“C”部分所占百分比为         %;(3)若该市共有30 000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人? -参考答案-一、单选题1、A【分析】每组的数据个数就是每组的频数,40减去第1,2,3,5小组数据的个数就是第4组的频数.【详解】解:第4小组的频数是40−(6+5+15+7)=7,
    故选:A.【点睛】本题考查频数和频率的知识,注意掌握每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.2、D【分析】根据出现次数最多找到众数,再判断A即可;将数据按顺序排列,找到居于中间位置的数即为中位数,再判断B即可;分别计算出平均数及方差,再判断C、D即可.【详解】解:A.甲的众数为7,乙的众数为8,故此项错误;B.甲的中位数为7,乙的中位数为4,故此项错误;C.甲的平均数为,乙的平均数为,甲的平均数>乙的平均数, 故此项错误;D.甲的方差为,乙的方差为,甲的方差小于乙的方差,故此项正确;故选:D.【点睛】此题主要考查了众数、中位数、方差和平均数,关键是掌握众数、中位数、平均数及方差的概念和方差公式.3、A【分析】根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断.【详解】解:15户居民2015年4月份用电量为30,30,30,30,30,42,42,42,50,50,50,51,51,51,51,平均数为×(30+30+30+30+30+42+42+42+50+50+50+51+51+51+51)=42,中位数为42;众数为30,方差为 ×[5×(30﹣42)2+3×(42﹣42)2+3×(50﹣42)2+4×(51﹣42)2]=82.4.BCD正确.故选:A.【点睛】本题考查的是平均数,中位数,众数,方差,熟练掌握平均数,中位数,众数,方差的定义是解题关键.4、A【分析】首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定【详解】解:∵∴应在甲和丁之间选择,甲和丁的平均成绩都为6.2,甲的方差为0.25,丁的方差为0.32,甲的成绩好且发挥稳定,故应选甲,故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.5、C【分析】根据题意求出众数,中位数,平均数和方差,然后进行判断即可.【详解】解:A、甲的成绩的平均数=(3+7+8+8+10)=7.2(环),乙的成绩的平均数=(7+7+8+9+10)=8.2(环),所以A选项说法错误,不符合题意;B、甲的成绩的中位数为8环.乙的成绩的中位数为8环,所以B选项说法错误,不符合题意;C、甲的成绩的众数为8环,乙的成绩的众数为7环;所以C选项说法正确,符合题意;D、,所以D选项说法错误,不符合题意.故选C.【点睛】本题主要考查了平均数,众数,中位数和方差,解题的关键在于能够熟练掌握相关知识进行求解.6、D【分析】首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解.【详解】解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键.7、B【分析】根据方差的意义及平均数、众数、中位数的定义求解可得.【详解】解:一组数据abcde的每一个数都加上同一数mm>0),则新数据ambm,…em的平均数在原来的基础上也增加m,数值发生了变化则众数和中位数也发生改变,方差描述的是它的离散程度,数据整体都加m,但是它的离散程度不变,即方差不变;故选:B.【点睛】本题主要考查统计量的选择,解题的关键是熟练掌握方差的意义与平均数、众数和中位数的定义.8、C【分析】将所求数据的平均值和方差按照相关公式列出,找出与已知数据平均数和方差的关系,代入计算即可.【详解】解:∵数据的平均数即:∴数据的平均数为又∵数据的方差即:∴数据的方差为故选:C【点睛】本题考查平均数和方查的计算,根据题意找出两组数据的联系是解题的关键.9、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S=6,S=1.8,S=5,S=8,∴1.8<5<6<8∴S最小,∴这四个旅游团中年龄相近的旅游团是:乙团.故选:B.【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、D【分析】先根据平均成绩选出,然后根据方差的意义求出【详解】解:根据平均数高,平均成绩好得出的性能好,根据方差越小,数据波动越小可得出的性能好,故选:D【点睛】本题主要考查了平均数和方差,熟练掌握平均数和方差的意义是解答本题的关键二、填空题1、甲的平均成绩高,且甲的成绩较为稳定【分析】因为甲的平均数大于乙的平均数,再根据方差的意义可作出判断.【详解】=84, =83.2,=13.2, =26.36,
    ∴甲的平均成绩高,且甲的成绩较为稳定;
    故答案为:甲的平均成绩高,且甲的成绩较为稳定.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、3
        10    150~160    【分析】(1)找出各个组中的人数,然后除以总人数即可得出所占百分比;(2)通过所给的数据把各个范围中的人数填入相应表格,根据所填写的信息及题意确定分成的组数、组距;(3)根据所填信息确定身高在哪个范围的人数最多即可.【详解】(1)填表:身高(cm)140~150150~160160~170频数1154百分比5%75%20%(2)上表把身高分成3组,组距是10;(3)身高在范围最多.【点睛】本题考查的是从统计图表中获取信息,关键是找出各个组中的人数,通过所给的数据把各个范围中的人数填入相应表格,然后据此得出相关结论.3、乙【分析】先根据乙的方差比甲的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.【详解】解:∵∴乙运动员的成绩更稳定;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、50    0.16    【分析】根据总数等于频数除以总数,频率等于频数除以总数求解即可.【详解】依题意(人)故答案为:【点睛】本题考查了频率与频数,理解频率,频数,总数之间的关系是解题的关键.频率表示每个对象出现的次数与总次数的比值.5、变大【分析】先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案.【详解】解:∵李强再跳两次,成绩分别为7.6,8.0,∴这组数据的平均数是∴这8次跳远成绩的方差是:∵0.0225>∴方差变大;故答案为:变大.【点睛】本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键.三、解答题1、(1)25,6,8(2)折线(3)1120人【分析】(1)由题意可知随机抽取样本容量为25,查取学生竞赛成绩的人数即为的值,的人数即为的值.(2)折线统计图可以反映数据变化.(3)等级的频率为,进而估计名同学成绩为等级的学生人数.(1)解:由题意可知样本容量为25,   m=6, n=8故答案为:25,6,8.(2)解:折线统计图可以反映数据变化故答案为:折线.(3)解:∵等级的频率为∴该校2000名同学中活动后的竞赛成绩为等级的学生有人.【点睛】本题考查了数据统计.解题的关键在于正确查取各成绩区间学生个数.2、(1)9.5,10;(2)9;(3)甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,所以乙队的成绩更加稳定,选择乙【分析】(1)先将甲队的成绩按从小到大的顺序排列,可得位于第5位和第6位的分别为9和10 ,可得甲队成绩的中位数是9.5分,再由乙队成绩中10出现的次数最多,可得乙队成绩的众数是10分;(2)利用乙队成绩的总和除以10,即可求解;(3)分别两队的平均成绩和方差,即可求解.【详解】解:(1)将甲队的成绩按从小到大的顺序排列为:7、7、8、9、9、10、10、10、10、10,位于第5位和第6位的分别为9和10 ,∴甲队成绩的中位数是 分,∵乙队成绩中10出现了4次,出现的次数最多,∴乙队成绩的众数是10分;(2)乙队的平均成绩为 分;(3)甲队的平均成绩为 分,甲队成绩的方差为乙队成绩的方差为∴甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,∴乙队的成绩更加稳定,选择乙.【点睛】本题主要考查了求一组数据的中位数,众数,平均数,利用方差做决策,熟练掌握一组数据中位于正中间的一个数或两个数的平均数是中位数;出现次数最多的数是众数;平均数等于数据的总和除以个数;方差越小,越稳定是解题的关键.3、(1)224,177,170,补全条形统计图见解析;(2)甲食堂较好,理由见解析;(3)甲食堂每天中午大约准备844名同学的午餐.【分析】(1)利用中位数,众数,极差的定义分别求解,求出乙食堂的“B组”的频数才能补全频数分布直方图;(2)从平均数的角度比较得出结论;(3)用样本估算总体即可.【详解】解:(1)甲食堂20天的所有人数中位数是第10、11个数据,a=224,177人的有3天,天数最多,∴b=177,乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260,c=290-120=170;∵20-3-7-4=6,∴补全乙食堂的人数数据条形统计图如图:故答案为:224,177,170;(2)甲食堂较好,理由:甲食堂就餐人数的平均数比乙食堂的高;(3)1600×=844(名),故北关中学甲食堂每天中午大约准备844名同学的午餐.【点睛】本题考查中位数、众数、极差以及频数分布直方图,理解中位数、众数、极差的意义,掌握频数分布直方图的意义是正确解答的关键.4、(1);(2)画图见解析【分析】(1)由B组8人,占比20%,列式可得总人数,由C组的占比乘以可得圆心角的度数;(2)先计算出C组的人数,再补全图形即可.【详解】解:(1)由B组8人,占比20%,可得总人数为:人,所以C组所在扇形的圆心角为: 故答案为: (2)C组的人数为:人,补全图形如下:【点睛】本题考查的是从扇形图与条形图中获取信息,频数与频率,画条形统计图,计算扇形某部分的圆心角,掌握以上基础知识是解题的关键.5、(1)50;(2)4,32;(3)21600【分析】(1)由B等级的人数及其所占百分比即可求出被调查的总人数;
    (2)用总人数减去BCD的人数即可得出a的值,用C等级人数除以被调查总人数即可得出其对应百分比;
    (3)用总人数乘以样本中CD人数所占比例即可.【详解】解:(1)本次被抽取的教职工共有10÷20%=50(名),
    故答案为:50;
    (2)a=50−(10+16+20)=4,
    扇形统计图中“C”部分所占百分比为×100%=32%,
    故答案为:4,32;
    (3)志愿服务时间多于60小时的教职工大约有30000×=21600(人).【点睛】此题主要考查了扇形统计图、频数(率)分布表,以及样本估计总体,关键是正确从扇形统计图和表格中得到所用信息. 

    相关试卷

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试综合训练题:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试综合训练题,共22页。

    北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题:

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题,共20页。试卷主要包含了为考察甲等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题,共22页。试卷主要包含了下列说法正确的是,一组数据等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map