八年级下册第十七章 方差与频数分布综合与测试课后测评
展开
这是一份八年级下册第十七章 方差与频数分布综合与测试课后测评,共20页。
京改版八年级数学下册第十七章方差与频数分布课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一组数据1、2、2、3中,加入数字2,组成一组新的数据,对比前后两组数据,变化的是( )A.平均数 B.中位数 C.众数 D.方差2、数字“20211202”中,数字“2”出现的频数是( )A.1 B.2 C.3 D.43、了解时事新闻,关心国家重大事件是每个中学生应具备的素养,在学校举行的新闻事件比赛中,知道“祝融号”成功到达火星的同学有40人,频率为0.8,则参加比赛的同学共有( )A.32人 B.40人 C.48人 D.50人4、2021年正值中国共产党建党100周年之际,某校开展“致敬建党百年,传承红色基因”党史知识竞赛活动.八年级甲、乙、丙、丁四个小组的同学分别参加了年级预赛,四个小组的平均分相同,若要从中选择出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( ) 甲乙丙丁 方差3.63.244.3A.甲组 B.乙组 C.丙组 D.丁组5、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.星期日一二三四五六个数11121013131312对于小强做引体向上的个数,下列说法错误的是( )A.平均数是12 B.众数是13C.中位数是12.5 D.方差是6、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元7、在一个样本中,40个数据分别落在5个小组内,第1,2,3,5小组的频数分别是6,5,15,7,则第4小组的频数是( )A.7 B.8 C.9 D.108、小明3分钟共投篮80次,进了50个球,则小明进球的频率是( )A.80 B.50 C.1.6 D.0.6259、已知一组数据﹣1,2,0,1,﹣2,那么这组数据的方差是( )A.10 B.4 C.2 D.0.210、对于一列数据(数据个数不少于6),如果去掉一个最大值和一个最小值,那么这列数据分析一定不受影响的是( )A.平均数 B.中位数 C.众数 D.方差第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一组数据a,b,c的方差为4,那么数据3a﹣2,3b﹣2,3c﹣2的方差是_____.2、一组数据5, 4, 2, 4, 5的方差是________.3、已知:①1,2,3,4,5的平均数是3,方差是2;②2,3,4,5,6的平均数是4,方差是2;③1,3,5,7,9的平均数是5,方差是8;④2,4,6,8,10的平均数是6,方差是8;请按要求填空:(1),,,,的平均数是 ,方差是 ;(2),,,,的平均数是 ,方差是 ;(3),,,,的平均数是 ,方差是 .4、甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩比较稳定的是 _____(填“甲”或“乙”).5、某校学生自主建立了一个学习用品义卖社团,已知八年级200名学生义卖所得金额的频数分布直方图如图所示,那么40~50元这个小组的组频率是__________.三、解答题(5小题,每小题10分,共计50分)1、为庆祝五四青年节,学校计划在“五四”前夕举行班级歌咏比赛,要确定一首喜欢唱的人数最多的歌曲为每班必唱歌曲.为此提供代号为四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制成如下的两幅不完整的统计图.请根据图1,图2所提供的信息,解答下列问题:(1)本次抽样调查的学生有多少名?(2)请将条形统计图补充完整;(3)求扇形图中的圆心角度数;(4)由统计图发现喜欢唱的人数最多的歌曲为哪一首?若全校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生喜欢唱此歌曲?2、中国共产党第十九届中央委员会第六次全体会议,于2021年11月8日至11日在北京举行.为了加强学生对时事政治的学习了解,某校开展了全校学生学习时事政治活动并进行了时事政治知识竞赛,从八、九年级中各随机抽取了20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:5,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,9,10,10,10.八、九年级抽取学生的竞赛成绩统计表.年级八年级九年级平均数7.87.8中位数ab众数7c优秀率30%35%根据以上信息,解答下列问题:(1)填空:a= ,b= ,c= ;(2)估计该校八年级1500名学生中竞赛成绩达到8分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级学生时事政治的竞赛成绩谁更优异,3、 “网上购物”已成为现代人们的生活方式.某电商平台在A地区随机抽取了100位居民进行调查,获得了他们每个人近七天“网上购物”消费总金额(单位:元),整理得到右边频率统计表:消费总金额x频率0.110.240.30.20.10.040.01(1)求被调查居民“网上购物”消费总金额不低于500元的频率;(2)假设同一组中的数据用该组数据所在范围的组中值(如一组,取)为准,求该地区消费总金额的平均值;(3)若A地区有100万居民,该平台为了促销,拟对消费总金额不到200元的居民提供每人10元的优惠,试估计该平台在A地区拟提供的优惠总金额.4、甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩依次如下(单位:环):甲:10,7,8,7,8,8乙:5,6,10,8,9,10(1)甲成绩的众数_________,乙成绩的中位数_________.(2)计算乙成绩的平均数和方差;(3)已知甲成绩的方差是1环,则_________的射击成绩离散程度较小.(填“甲”或“乙”)5、在精准扶贫的政策下,某贫困户在当地政府的支持和帮助下办起了养殖业,经过一段时间的精心饲养,总量为6000只的一批兔子达到了出售标准,现从这批兔中随机选择部分进行称重,将得到的数据用下列统计图表示(频数分布直方图每组含前一个边界值,不含后一个边界值).根据以上信息,解答下列问题:(1)补全图中的频数分布直方图;(2)估计这批兔子中质量不小于1.7kg的有多少只. -参考答案-一、单选题1、D【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得:原来的平均数为,加入数字2之后的平均数为,∴平均数没有发生变化,故A选项不符合题意;原数据处在最中间的两个数为2和2,∴原数据的中位数为2,把新数据从小到大排列为1、2、2、2、3,处在最中间的数是2,∴新数据的中位数为2,故B选项不符合题意;原数据中2出现的次数最多,∴原数据的众数为2,新数据中2出现的次数最多,∴新数据的众数为2,故C选项不符合题意;原数据的方差为,新数据的方差为,∴方差发生了变化,故D选项符合题意;故选D.【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.2、D【分析】根据频数的定义(频数又称“次数”,指变量中代表某种特征的数出现的次数)求解即可.【详解】解:数字“20211202”中,共有4个“2”,∴数字“2”出现的频数为4,故选:D.【点睛】题目主要考查频数的定义,理解频数的定义是解题关键.3、D【分析】根据频率=频数总数,求解即可.【详解】解:根据频率=频数总数,即总数=频数频率,则参加比赛的同学共有40÷0.8=50(人),故选:D.【点睛】本题考查了频数与频率,记住公式:频率=频数总数是解题的关键.4、B【分析】由平均数相同,根据方差越小越稳定可得出结论.【详解】解:∵4.3>4>3.6>3.2∴,∵四个小组的平均分相同,∴乙组各成员实力更平均,选择乙组代表年级参加学校决赛.故选择B.【点睛】本题考查平均数与方差,利用方差进行决策,掌握方差的意义是解题关键.5、C【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得它们的平均数为:,故选项A不符合题意;∵13出现的次数最多,∴众数是13,故B选项不符合题意;把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,∴中位数为12,故C选项符合题意;方差:,故D选项不符合题意;故选C.【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.6、A【详解】解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;B、共20人,样本容量为20,故选项B正确;C、极差为500﹣50=450元,故选项C正确;D、该企业员工最大捐款金额是500元,故选项D正确.故选:A .【点睛】本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.7、A【分析】每组的数据个数就是每组的频数,40减去第1,2,3,5小组数据的个数就是第4组的频数.【详解】解:第4小组的频数是40−(6+5+15+7)=7,
故选:A.【点睛】本题考查频数和频率的知识,注意掌握每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.8、D【分析】根据频率等于频数除以数据总和,即可求解.【详解】∵小明共投篮80次,进了50个球,∴小明进球的频率=50÷80=0.625,故选D.【点睛】本题主要考查频数和频率,掌握“频率等于频数除以数据总和”是解题的关键.9、C【分析】根据方差公式进行计算即可.方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差.【详解】﹣1,2,0,1,﹣2,这组数据的平均数为故选C【点睛】本题考查了求一组数据的方差,掌握方差的计算公式是解题的关键.10、B【分析】根据中位数不受极端值的影响即可得.【详解】解:由题得,去掉了一组数据的极端值,中位数不受极端值的影响,故选B.【点睛】本题考查了一组数的特征数据,解题的关键是掌握平均数,中位数,众数,方差.二、填空题1、36【分析】根据“当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍”求解可得.【详解】解:∵数据a,b,c的方差为4,∴数据3a﹣2,3b﹣2,3c﹣2的方差32×4=36,故答案为:36.【点睛】本题考查了方差的定义.当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.2、1.2【分析】首先求出平均数,然后根据方差的计算法则求出方差.【详解】解:平均数,
数据的方差 ,
故答案为 :1.2.【点睛】本题主要考查了求方差,解题的关键在于能够熟练掌握求方差的方法.3、(1),2 ;(2),8;(3),【分析】(1)数据n,n+1,n+2,n+3,n+4是在数据1,2,3,4,5的基础上每个数据均加上(n−1)所得,只需将数据的平均数加上(n−1)即可,而数据波动幅度不变;(2)数据n,n+2,n+4,n+6,n+8是在数据2,4,6,8,10的基础上每个数据均加上(n−2)所得,只需将原数据的平均数加上(n−2)即可,而数据波动幅度不变;;(3)由数据n,2n,3n,4n,5n是将1,2,3,4,5分别乘以n所得,将原数据的平均数乘以n,方差乘以n2即可得出答案.【详解】解:(1)∵数据n,n+1,n+2,n+3,n+4是在数据1,2,3,4,5的基础上每个数据均加上(n−1)所得,∴数据n,n+1,n+2,n+3,n+4的平均数3+n−1=n+2,方差依然是2,故答案为:n+2,2;(2)∵数据n,n+2,n+4,n+6,n+8是在数据2,4,6,8,10的基础上每个数据均加上(n−2)所得,∴n,n+2,n+4,n+6,n+8的平均数是6+n−2=n+4,方差依然是8,故答案为:n+4,8;(3)数据n,2n,3n,4n,5n是将1,2,3,4,5分别乘以n所得,∴数据n,2n,3n,4n,5n的平均数为3n,方差为2n2,故答案为:3n,2n2.【点睛】本题主要考查方差和平均数,解题的关键是掌握平均数和方差的性质.4、乙【分析】根据方差的意义求解即可.【详解】解:∵S甲2=1.4,S乙2=0.2,∴S乙2<S甲2,∴两人成绩比较稳定的是乙,故答案为:乙.【点睛】本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5、0.15【分析】求出40~50元的人数,再根据频率=频数÷总数进行计算即可.【详解】解:“40~50元”的人数为:200−10−30−50−80=30(人),“40~50元”的频率为:30÷200=0.15,故答案为:0.15.【点睛】本题考查频数分布直方图,掌握频率=频数÷总数是正确解答的关键.三、解答题1、(1)本次抽样调查的学生有180人;(2)见解析;(3)72°;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.【分析】(1)用曲目D的人数除以其占比即可得到答案;(2)根据(1)所求,先算出曲目C的人数,然后补全统计图即可;(3)用360度乘以曲目A的人数占比即可得到答案;(4)根据统计图可知喜欢曲目C的人数最多,然后用全校人数乘以样本中曲目C的占比即可得到答案.【详解】解:(1)由题意得:总人数人,答:本次抽样调查的学生有180人;(2)由(1)得喜欢曲目C的人数人,∴补全条形统计图如下所示:(3)由题意得扇形图中A的圆心角度数;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有人,答:由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,补全统计图,求扇形圆心角度数等等,读懂统计图是解题的关键.2、(1)7.5;8;8.(2)750人;(3)从优秀率来评价两个年级学生时事政治的竞赛成绩,九年级更优异.【分析】(1)根据题意,利用表格和扇形统计图给出的数据,即可求出a、b、c的值;(2)先求出样本中八年级8分及以上的频率,然后估算总体的数量即可;(3)根据两个年级的优秀率,即可进行判断.【详解】解:(1)根据题意,八年级的数据中,中位数为:;九年级的扇形图数据中,8分出现最多,中位数落在8分内,∴中位数:;众数为:;故答案为:7.5;8;8.(2)样本中八年级8分及以上的频率为:,∴该校八年级1500名学生中竞赛成绩达到8分及以上的人数有:(人);(3)根据数据可知,八年级的优秀率为30%;九年级的优秀率为35%;∴从优秀率来评价两个年级学生时事政治的竞赛成绩,九年级更优异.【点睛】本题考查中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.3、(1)0.05;(2)260元;(3)350万元【分析】(1)根据表格数据,将不低于500的频率相加即可;(2)根据组中值乘以对应的频率即可求得该地区消费总金额的平均值;(3)根据表中消费总金额不到200元的频率乘以100万即可求得该平台在A地区拟提供的优惠总金额.【详解】解:(1)被调查居民“网上购物”消费总金额不低于500元的频率为0.04+0.01=0.05(2)该地区消费总金额的平均值为(元)(3)(万元)【点睛】本题考查了根据频率求频数,根据组中值求平均数,根据样本求总体,掌握频数与频率的关系是解题的关键.4、(1)8,;(2)乙的平均数,方差;(3)甲【分析】(1)根据众数的定义可得甲成绩的众数,将乙成绩重新排列,再根据中位数的定义求解即可;(2)根据算术平均数和方差的定义求解即可;(3)比较甲乙成绩的方差,比较大小后,依据方差的意义可得答案.【详解】解:(1)甲打靶的成绩中8环出现3次,次数最多,所以甲成绩的众数是8环;将乙打靶的成绩重新排列为5、6、8、9、10、10,所以乙成绩的中位数为,故答案为:8、8.5;(2)乙成绩的平均数为,方差为;(3)甲成绩的方差为1环,乙成绩的方差为环,甲成绩的方差小于乙,甲的射击成绩离散程度较小.【点睛】本题主要考查方差,解题的关键是掌握算术平均数、众数、中位数及方差的意义.5、(1)见解析;(2)960只【分析】(1)先根据D组的频数和占比求出抽取兔子的数量,然后求出C组兔子的数量,最后补全统计图即可;(2)先求出样本中这批兔子中质量不小于1.7kg的百分比,然后估计总体即可.【详解】解:(1)抽取兔子的数量是,则质量在“C”部分的兔子数量是(只).补全频数分布直方图如下:(2)由题意得:这批兔子中质量不小于1.7kg的大约有(只).【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,补全条形统计图,解题的关键在于能够正确理解题目所示的统计图.
相关试卷
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课堂检测,共21页。试卷主要包含了某校八年级人数相等的甲,一组数据,下列说法正确的是,在频数分布表中,所有频数之和等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课时作业,共21页。试卷主要包含了在这学期的六次体育测试中,甲等内容,欢迎下载使用。
这是一份初中第十七章 方差与频数分布综合与测试课时训练,共21页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。