初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习,共15页。试卷主要包含了用配方法解方程,则方程可变形为,已知关于x的一元二次方程,把方程化成.等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为( )A. B.C. D.2、下列命题中,逆命题不正确的是( )A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.全等三角形对应角相等D.直角三角形的两条直角边的平方和等于斜边的平方3、下列方程中是一元二次方程的是( )A.2x+1=0 B.y2+x=1 C.x2+1=0 D.4、某公司今年10月的营业额为2500万元,按计划第十二月的总营业额要达到9100万元,求该公司11;12两个月营业额的月均增长率,设该公司11,12两个月营业额的月均增长率为,则根据题意可列的方程为( )A. B.C. D.5、用配方法解方程,则方程可变形为( )A. B. C. D.6、已知关于x的一元二次方程:x2﹣2x+m=0有两个不相等的实数根x1,x2,则( )A.x1+x2<0 B.x1x2<0 C.x1x2>﹣1 D.x1x2<17、已知m,n是一元二次方程的两个实数根,则的值为( ).A.4 B.3 C. D.8、某公司去年的各项经营中,九月份的营业额为200万,十一月的营业额为950万元,如果平均每月营业额的增长率相同,设这个增长率为,则可列方程得( )A. B.C. D.9、把方程化成(a,b为常数)的形式,a,b的值分别是( ).A.2,7 B.2,5 C.,7 D.,510、下列方程中是一元二次方程的是( )A.y+2=1 B.=0 C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于x的一元二次方程的一个根是2,则k的值是______.2、已知,那么的值是______.3、若为整数,关于的一元二次方程有实数根,则整数的最大值为__________.4、若关于x的一元二次方程x2﹣m=0的一个解为3,则m的值为___.5、如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为660平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为______________.三、解答题(5小题,每小题10分,共计50分)1、解分式方程:2、解方程:.3、解方程:.4、已知关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,请求出m的最大整数值.5、已知关于x的一元二次方程有两个实数根,.(1)若,求k的值.(2)若,,求k的取值范围. -参考答案-一、单选题1、A【分析】设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此列出方程即可.【详解】解:设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此可得:,故选:A.【点睛】题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键.2、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;C.逆命题为:对应角相等的两三角形全等,错误,符合题意;D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.故选:C【点睛】本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.3、C【详解】解:A、未知数次数是1,不是一元二次方程,故本选项不符合题意;B、含有2个未知数,不是一元二次方程,故本选项不符合题意;C、是一元二次方程,故本选项符合题意;D、分母中含有未知数,不是一元二次方程,故本选项不符合题意;故选:C【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有1个未知数,且未知数的最高次数为2的整式方程是一元二次方程是解题的关键.4、C【分析】根据等量关系第10月的营业额×(1+x)2=第12月的营业额列方程即可.【详解】解:根据题意,得:,故选:C.【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.5、D【分析】根据配方法解一元二次方程步骤变形即可.【详解】∵∴∴∴∴故选:D.【点睛】本题考查了配方法解一元二次方程,具体步骤为(1)化二次项系数为1. 当二次项系数不是1时,方程两边同时除以二次项系数(2)加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此方程的等式关系不变,故在右侧同时加上一次项系数一半的平方(3)配方后将原方程化为的形式,再用直接开平方的方法解方程.6、D【分析】利用根与系数关系,得到两根之和,即可判断A选项,利用根的判别式,求出的取值范围,利用两根之积,得到,最后即可判断出正确答案.【详解】解:由题意可知:两根之和:,故A错误,x2﹣2x+m=0有两个不相等的实数根,,解得:, 由根与系数的关系可知:,只有D选项正确,故选:D.【点睛】本题主要是考查了根与系数的关系以及根的判别式,熟练利用根与系数的关系,求出两根之和与两根之积,以及利用根的判别式,求出参数范围,是解决本题的关键.7、A【分析】根据方程的系数结合根与系数的关系,即可得出m+n的值,此题得解.【详解】解:∵m、n是一元二次方程的两个实数根,∴m+n=4.故选:A.【点睛】本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.8、C【分析】根据增长率的意义,列式即可.【详解】设这个增长率为,根据题意,得,故选C.【点睛】本题考查了一元二次方程的应用,增长率问题,熟练增长率问题计算特点是解题的关键.9、C【分析】利用配方法将一元二次方程进行化简变形即可得.【详解】解:,,,,∴,,故选:C.【点睛】题目主要考查利用配方法将一元二次方程进行变形,熟练掌握配方法是解题关键.10、B【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程,据此解答即可.【详解】解:A.是二元二次方程,故本选项不合题意; B.是一元二次方程,故本选项符合题意;C.是二元二次方程,故本选项不合题意;D.当a=0时,不含二次项,故本选项不合题意;故选:B.【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.二、填空题1、-2【分析】知道方程的一根,把x=2代入方程中,即可求出未知量k.【详解】解:将x=2代入一元二次方程x2-x+k=0,可得:4-2+k=0,
解得k=-2,故答案为:-2.【点睛】本题主要考查了一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用.2、-5【分析】先利用配方法把所求的代数式配方,然后代值计算即可.【详解】解:∵,∴ ,故答案为:-5.【点睛】本题主要考查了配方法的使用和代数式求值,解题的关键在于能够熟练掌握配方法.3、3【分析】根据一元二次方程的二次项的系数不等于0、根的判别式求出的取值范围,由此即可得出答案.【详解】解:由题意得:,解得,且,为整数,整数的最大值为3,故答案为:3.【点睛】本题考查了一元二次方程根的判别式等知识点,熟练掌握一元二次方程根的判别式是解题关键.4、9【分析】根据一元二次方程的解定义,代入即可求得的值.【详解】解:把x=3代入x2﹣m=0得9﹣m=0,解得m=9.故答案为9.【点睛】本题考查了一元二次方程的解,掌握一元二次方程解的定义是解题的关键.一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.5、(35-2x)(20-x)=660【分析】若设小道的宽为x米,则阴影部分可合成长为(35-2x)米,宽为(20-x)米的矩形,利用矩形的面积公式,即可得出关于x的一元二次方程,此题得解【详解】解:依题意,得:(35-2x)(20-x)=660.故答案为:(35-2x)(20-x)=660.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.三、解答题1、x=4【分析】两边都乘以x2-4化为整式方程求解,然后验根即可.【详解】解:,两边都乘以x2-4,得2(x-2)-4x=-(x2-4),x2-2x-8=0,(x+2)(x-4)=0,x1=-2,x2=4,检验:当x=-2时,x2-4=0,当x=4时,x2-4≠0,∴x=4是原分式方程的根.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.2、,【分析】确定,,,采用求根公式法解答即可.【详解】∵,∴,,,△,则,,.【点睛】本题考查了一元二次方程的解法,熟练掌握求根公式是解题的关键.3、,【分析】先用根的判别式判断根是否存在,然后再利用求根公式解答即可.【详解】解:∵,∴,即,.【点睛】本题主要考查了运用公式法解一元二次方程,牢记一元二次方程的求根公式()是解答本题的关键.4、m的最大整数值为0【分析】根据方程有两个实数根,得到根的判别式大于等于0,确定出m的范围,进而求出最大整数值即可.【详解】解:∵关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,∴b2﹣4ac=(2m)2﹣4(m﹣1)(m+3)=4m2﹣(4m2+8m﹣12)=4m2﹣4m2﹣8m+12=﹣8m+12≥0,m﹣1≠0,解得:m≤且m≠1,则m的最大整数值为0.【点睛】本题主要考查了一元二次方程根的判别式的应用,准确计算是解题的关键.5、(1)或;(2)【分析】(1)根据方程的特点,因式分解法解方程,进而求得的值;(2)根据方程的解,以及,,即可求得k的取值范围.【详解】解:有实根(1)即解得即或解得或(2)若,,则解得【点睛】本题考查了解一元二次方程,求得方程的解是解题的关键.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试同步练习题,共16页。试卷主要包含了已知方程的两根分别为m,一元二次方程的二次项系数等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试一课一练,共16页。试卷主要包含了一元二次方程x2﹣x=0的解是等内容,欢迎下载使用。
这是一份2021学年第十六章 一元二次方程综合与测试当堂达标检测题,共17页。试卷主要包含了如图,某学校有一块长35米,方程x2﹣x=0的解是,一元二次方程的根的情况是等内容,欢迎下载使用。