搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化京改版八年级数学下册第十六章一元二次方程章节测试练习题(无超纲)

    2021-2022学年基础强化京改版八年级数学下册第十六章一元二次方程章节测试练习题(无超纲)第1页
    2021-2022学年基础强化京改版八年级数学下册第十六章一元二次方程章节测试练习题(无超纲)第2页
    2021-2022学年基础强化京改版八年级数学下册第十六章一元二次方程章节测试练习题(无超纲)第3页
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习

    展开

    这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习,共16页。试卷主要包含了一元二次方程x2=-2x的解是等内容,欢迎下载使用。
    京改版八年级数学下册第十六章一元二次方程章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题中,逆命题不正确的是(  )A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.全等三角形对应角相等D.直角三角形的两条直角边的平方和等于斜边的平方2、如图,某学校有一块长35米、宽20米的长方形试验田,为了便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米.设小道的宽为米,根据题意可列方程为(    A. B.C. D.3、某公司今年10月的营业额为2500万元,按计划第十二月的总营业额要达到9100万元,求该公司11;12两个月营业额的月均增长率,设该公司11,12两个月营业额的月均增长率为,则根据题意可列的方程为(    A. B.C. D.4、一元二次方程x2=-2x的解是(      A.x1x2=0 B.x1x2=2 C.x1=0,x2=2 D.x1=0,x2=-25、把长为2 m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积.设较长一段的长为x m,依题意,可列方程为(     A. B. C. D.6、如图,在一块长为30m,宽为20m的矩形地面上,要修建同样宽的两条互相垂直的道路,剩余部分种上草坪,使草坪面积为300m2,若设道路宽为xm,则根据题意可列方程为(   
    A. B.C. D.7、用配方法解方程x2+4x=1,变形后结果正确的是(    A.(x+2)2=5 B.(x+2)2=2 C.(x-2)2=5 D.(x-2)2=28、关于x的一元二次方程x2mx+(m-2)=0的根的情况是(  )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.根据m的取值范围确定9、参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为(    A. B.C. D.10、若关于x的方程kx2﹣4x﹣2=0有实数根,则实数k的取值范围是(  )A.k≥2 B.k≥﹣2 C.k>﹣2且k≠0 D.k≥﹣2且k≠0第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于x的一元二次方程的一个根是2,则k的值是______.2、设mn分别为一元二次方程的两个实数根,则______.3、关于x的方程有两个不相等的实数根,则m的取值范围是______.4、若关于x的一元二次方程的一个根是m,则的值为______.5、学校组织一次乒乓球赛,要求每两队之间都要比赛一场.若共赛了28场,设有个球队参赛,根据题意列出满足的关系式为_______.三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)(2)2、已知是方程的一个根,求代数式的值.3、已知函数y1x+1和y2x2+3xcc为常数).(1)若两个函数图像只有一个公共点,求c的值;(2)点A在函数y1的图像上,点B在函数y2的图像上,AB两点的横坐标都为m.若AB两点的距离为3,直接写出满足条件的m值的个数及其对应的c的取值范围.4、已知关于的一元二次方程(1)求证:此方程总有两个实数根;(2)若此方程恰有一个根小于,求的取值范围.5、(1)计算:(2)解方程: -参考答案-一、单选题1、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;C.逆命题为:对应角相等的两三角形全等,错误,符合题意;D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.故选:C【点睛】本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.2、C【分析】设小道的宽为米,则剩余部分可合成长米,宽米的长方形,根据种植面积为600平方米,列出关于的一元二次方程即可.【详解】解:设小道的宽为米,则剩余部分可合成长米,宽米的长方形,依题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系、列出一元二次方程是解答本题的关键.3、C【分析】根据等量关系第10月的营业额×(1+x2=第12月的营业额列方程即可.【详解】解:根据题意,得:故选:C.【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.4、D【分析】先移项、然后再利用因式分解法解方程即可.【详解】解 :x2=-2xx2+2x=0xx+2)=0,x=0或x+2=0,所以x1=0,x2=-2.故选:D.【点睛】本题考查了解一元二次方程−因式分解法,把解一元二次方程的问题转化为解一元一次方程的问题成为解答本题的关键.5、A【分析】由题意依据较长一段的长的平方等于较短一段的长与原绳长的积建立方程即可得出答案.【详解】解:设较长一段的长为x m,则较短一段的长为(2-xm由题意得:.故选:A.【点睛】本题考查一元二次方程的实际运用,根据题意找出题目蕴含的数量关系是解决问题的关键.6、B【分析】根据题意草坪的长为m,宽为m,根据长方形的面积公式列出一元二次方程即可【详解】解:设道路宽为xm,则根据题意可列方程为故选B【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.7、A【分析】方程的两边同时加上一次项系数一半的平方即可,进而即求得答案.【详解】解:x2+4x=1故选A【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.8、A【分析】根据根的判别式判断即可.【详解】∴方程有两个不相等的实数根.故选:A.【点睛】本题考查一元二次方程根的判别式,当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根,熟记判别式并灵活应用是解题关键.9、A【分析】设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此列出方程即可.【详解】解:设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此可得:故选:A.【点睛】题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键.10、B【分析】根据当时,方程是一元一次方程有实数根,当时,根据一元二次方程的定义和根的判别式的意义得到k≠0且Δ=(-4)2-4 k×(-2)≥0,然后求出两不等式组的公共部分,两种情况合并即可.【详解】解:根据题意得:①当时,方程是一元一次方程,此时﹣4x﹣2=0,方程有实数解;②当时,此方程是一元二次方程,可得k≠0且Δ=(-4)2-4 k×(-2)≥0,解得k≥-2且k≠0.综上,当时,关于x的方程kx2﹣4x﹣2=0有实数根,故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.二、填空题1、-2【分析】知道方程的一根,把x=2代入方程中,即可求出未知量k【详解】解:将x=2代入一元二次方程x2-x+k=0,可得:4-2+k=0,
    解得k=-2,故答案为:-2.【点睛】本题主要考查了一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用.2、2019【分析】由韦达定理可列出mn的代数值,代入计算即可.【详解】mn分别为一元二次方程的两个实数根m+n=-2,【点睛】本题考查了韦达定理,如果的两个实数根是,那么.推论1:如果方程的两个根是,那么.推论2:以两个数为根的一元二次方程(二次项系数为1)是3、【分析】利用判别式的意义得到△,然后解不等式即可.【详解】解:根据题意得△解得故答案是:【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.4、-2011【分析】由关于x的一元二次方程的一个根是m,可得,再由求解即可.【详解】解:∵关于x的一元二次方程的一个根是m故答案为:-2011.【点睛】本题考查一元二次方程的解和代数式求值,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.5、【分析】每支球队要和其他球队共比赛场,一共个球队,共需要 场比赛,但每两支球队之间重复了一次,故实际需要,根据题意,即可列出方程.【详解】解:由题意可知:每支球队要和其他球队共比赛场,一共个球队,共需要 场比赛但每两支球队之间重复了一次,故实际比赛场数为故答案为:【点睛】本题主要是考查了列一元二次方程,熟练地找到等式关系,根据等式关系列出对应方程,这是解决该类题目的关键.三、解答题1、(1)原方程无解;(2)【分析】(1)方程两边同乘以化成整式方程,再解一元一次方程即可得;(2)方程两边同乘以化成整式方程,再解一元二次方程即可得.【详解】解:(1)方程两边同乘以,得移项、合并同类项,得系数化为1,得经检验,不是分式方程的解,所以原方程无解;(2)方程两边同乘以,得移项、合并同类项,得因式分解,得解得经检验,不是分式方程的解;是分式方程的解,所以原方程的解为【点睛】本题考查了解分式方程,熟练掌握方程的解法是解题关键.需注意的是,分式方程需进行检验.2、6【分析】代入方程,得出,再整体代入求值即可.【详解】解: =               a是方程的根                                                             ∴ 原式 = 6.【点睛】本题考查了一元二次方程的解和代数式求值,解题关键是明确方程解的意义,整体代入求值.3、(1)c=2;(2)当c>5时,m有0个;当c=5时,m有1个;当-1<c<5时,m有2个;当c=-1时,m有3个;当c<-1时,m有4个【分析】(1)只需求出y1=y2时对应一元二次方程有两个相等的实数根的c值即可;(2)根据题意,AB=|m2+2mc-1|=3,分m2+2mc-1>0和m2+2mc-1<0两种情况,利用一元二次方程根的判别式与根的关系求解即可.【详解】解:(1)根据题意,若两个函数图像只有一个公共点,则方程x2+3xcx+1有两个相等的实数根,∴△=b2-4ac=22-4(c-1)=0,c=2;(2)由题意,Amm+1),Bmm2+3mcAB=|m2+3mc-m-1|=|m2+2mc-1|=3,①当m2+2mc-1>0时,m2+2mc-1=3,即m2+2mc-4=0,△=22-4(c-4)=20-4c,令△=20-4c=0,解得:c=5,∴当c<5时,△>0,方程有两个不相等的实数根,即m有2个;c=5时,△=0,方程有两个相等的实数根,即m有1个;c>5时,△<0,方程无实数根,即m有0个;②当m2+2mc-1<0时,m2+2mc-1=-3,即m2+2mc+2=0,△=22-4(c+2)=-4c-4,令△=-4c-4=0,解得:c=-1,∴当c<-1时,△>0,方程有两个不相等的实数根,即m有2个;c=-1时,△=0,方程有两个相等的实数根,即m有1个;c>-1时,△<0,方程无实数根,即m有0个;综上,当c>5时,m有0个;c=5时,m有1个;当-1<c<5时,m有2个;c=-1时,m有3个;c<-1时,m有4个.【点睛】本题考查函数图象上点的坐标特征、一元二次方程根的判别式与根的关系、坐标与图形,解答的关键是熟练掌握一元二次方程根的判别式与根的关系:△>0,方程有两个不相等的实数根,△=0,方程有两个相等的实数根,△<0,方程无实数根.4、(1)见详解;(2)k<-4【分析】(1)根据方程的系数结合根的判别式,可得Δ≥0,由此可证出方程总有两个实数根;
    (2)利用分解因式法解一元二次方程,可得出x1=2、x2= k+3,根据方程有一根小于-1,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】(1)证明:∵在方程中,Δ=[-(k+5)]2-4×1×(6+2k)=k2+2k+1=(k+1)2≥0,
    ∴方程总有两个实数根.
    (2)解:∵
    x1=2,x2=k+3.
    ∵此方程恰有一个根小于
    k+3<-1,解得:k<-4,
    k的取值范围为k<-4.【点睛】本题考查了根的判别式、因式分解法解一元二次方程以及解一元一次不等式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)利用因式分解法解一元二次方程结合方程一根小于-1,找出关于k的一元一次不等式.5、(1)2;(2).【分析】(1)由题意先利用二次根式的乘除运算法则计算,进而计算算术平方根,最后计算加减法即可;(2)根据题意利用配方法进行计算即可解出方程.【详解】解:(1)原式(2)解得:.【点睛】本题考查二次根式的乘除运算和解一元二次方程,熟练掌握二次根式的乘除运算法则和利用配方法求解方程是解题的关键. 

    相关试卷

    北京课改版八年级下册第十六章 一元二次方程综合与测试课后测评:

    这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课后测评,共17页。试卷主要包含了已知关于x的一元二次方程等内容,欢迎下载使用。

    初中第十六章 一元二次方程综合与测试一课一练:

    这是一份初中第十六章 一元二次方程综合与测试一课一练,共17页。试卷主要包含了一元二次方程的根的情况是等内容,欢迎下载使用。

    2021学年第十六章 一元二次方程综合与测试课后测评:

    这是一份2021学年第十六章 一元二次方程综合与测试课后测评,共16页。试卷主要包含了下列方程是一元二次方程的是,方程x2﹣8x=5的根的情况是,把方程化成.等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map