数学七年级下册第五章 二元一次方程组综合与测试课时作业
展开
这是一份数学七年级下册第五章 二元一次方程组综合与测试课时作业,共18页。
京改版七年级数学下册第五章二元一次方程组同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列是二元一次方程的是( )A. B. C. D.2、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是( )A.1 B.﹣1 C.2 D.﹣23、已知方程组的解满足,则的值为( )A.7 B. C.1 D.4、关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出m,则m的值是( )A. B. C. D.5、下列方程中,是关于x的一元二次方程的是( )A.x(x-2)=0 B.x2-1-y=0 C.x2+1=x2-2x D.ax2+c=06、关于的二元一次方程组的解满足,则k的值是( )A.2 B. C. D.37、已知是方程5x−ay=15的一个解,则a的值为( )A.5 B.−5 C.10 D.−108、如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )A.9 B.7 C.5 D.39、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )A. B. C. D.10、若xa﹣b﹣2ya+b﹣2=0是二元一次方程,则a,b的值分别是( )A.1,0 B.0,﹣1 C.2,1 D.2,﹣3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁.”则甲、乙现在的年龄分别是______.2、如图所示,矩形ABCD被分成一些正方形,已知AB=32cm,则矩形的另一边AD=________cm.3、有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,如果放牧16头牛,则__________天可以吃完牧草.4、在《九章算术》的“方程”一章中,一次方程组是由算筹布置而成的,若图1所示的算筹图表示的方程组为,则图2所表示的方程组的解为__________.5、在第四个“中国农民丰收节”来临之际,中国邮政推出了“城市邮票”盲盒,盲盒内含不同丰收场景的邮票,其中A,B,C三种邮票最受消费者喜爱.故中国邮政准备加印这三种邮票单独售卖.A,B,C三种邮票分别加印各自原有数量的2倍,3倍,2倍.加印后,这三种邮票原有总数量占加印邮票总数量的,若印制A,B,C三种邮票的单张费用之比为3:2:15,且加印B邮票的总费用是加印三种邮票总费用的,则A邮票原有数量与三种邮票原有总数量之比为______________.三、解答题(5小题,每小题10分,共计50分)1、已知方程组的解也是关于、的二元一次方程的一组解,求的值.2、在解方程组时,由于小明看错了方程①中的a,得到方程组的解为,小华看错了方程②中的b,得到方程组的解为x=2,y=1.(1)求a、b的值;(2)求方程组的正确解.3、阅读材料:在解方程组时,萌萌采用了一种“整体代换”的解法.解:将方程②变形:,即③把方程①代入③得,∴,把代入①,得,∴原方程组的解为.请模仿萌萌的“整体代换”法解方程组4、解方程组5、列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如表所示:类别/单价成本价(元/箱)销售价(元/箱)A品牌2032B品牌3550(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润? ---------参考答案-----------一、单选题1、B【分析】由二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,解答即可.【详解】解:A、不是二元一次方程,只含有一个未知数,不符合题意;B、是二元一次方程,符合题意;C、不是二元一次方程,未知项的次数为2,不符合题意;D、不是二元一次方程,未知项的次数为2,不符合题意;故选B【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程,掌握二元一次方程的概念是解题的关键.2、C【分析】先求出的解,然后代入kx+y=7求解即可.【详解】解:联立,②-①,得-3y=3,∴y=-1,把y=-1代入①,得x-1=3∴x=4,∴,代入kx+y=7得:4k﹣1=7,∴k=2,故选:C.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.3、D【分析】①+②得出x+y的值,代入x+y=1中即可求出k的值.【详解】解:①+②得:3x+3y=4+k,∴,∵,∴,∴,解得:,故选:D【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4、A【分析】把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.【详解】解:把x=1代入方程组,可得,解得y=2,将y=2代入1+my=0中,得m=,故选:A.【点睛】此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.5、A【分析】根据一元二次方程的定义,对选项逐个判断即可,一元二次方程是指化简后,只含有一个未知数并且未知数的次数为2的整式方程.【详解】解:A、含有一个未知数,且未知数次数为2,为一元二次方程,符合题意;B、含有两个未知数,不是一元二次方程,不符合题意;C、,含有一个未知数,不是一元二次方程,不符合题意;D、当时,不是一元二次方程,不符合题意;故选:A【点睛】此题考查了一元二次方程的定义,解题的关键是理解一元二次方程的概念.6、B【分析】解方程组,用含的式子表示,然后将方程组的解代入即可.【详解】解:,①-②得:,∵,∴,解得:,故选:B.【点睛】本题考查了二元一次方程组解,和二元一次方程组的解的应用,运用整体法得出,可以是本题变得简便.7、A【分析】把与的值代入方程计算即可求出的值.【详解】解:把代入方程,得,解得.故选:.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8、C【分析】先求出的解,然后代入可求出a的值.【详解】解:,由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得2a-y=a,∴y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,∴a=7,故选C.【点睛】本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.9、D【分析】利用加减消元法逐项判断即可.【详解】A. ,可以消去x,不符合题意;B. ,可以消去y,不符合题意;C. ,可以消去x,不符合题意;D. ,无法消元,符合题意;故选:D【点睛】本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.10、C【分析】根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解.【详解】解:∵xa﹣b﹣2ya+b﹣2=0是二元一次方程,∴ ,解得:. 故选:C【点睛】本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.二、填空题1、42岁,23岁【解析】【分析】设甲现在x岁,乙现在y岁,根据甲、乙年龄之间的关系,可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设甲现在x岁,乙现在y岁,依题意,得:,解得:.答:甲现在42岁,乙现在23岁.故答案为:42岁,23岁.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2、29【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求矩形另一边AD的长即可,仍可用xy表示出来.【详解】解:设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y表示出来(如图),根据AB=CD=32cm,可得,解得:,矩形的另一边AD=x+2y+y+2y=x+5y=29cm.故答案为:29.【点睛】本题考查了整式乘法运算的应用,二元一次方程组的应用,解题的关键是读懂图意根据矩形的性质列出方程组并求解.3、18【解析】【分析】设每头牛每天吃草x千克,牧场的草每天生长y千克,如果放牧16头牛,则m天可以吃完牧草,根据牧草原有牧草数不变,可得出关于x,y,m的方程组,解方程组即可.【详解】解:设每头牛每天吃草x千克,牧场的草每天生长y千克,如果放牧16头牛,则m天可以吃完牧草,依题意,得:,由①可得出:y=12x③,将③代入②中,得:16mx﹣12mx=24×6x﹣6×12x,解得:m=18.故答案为:18.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.4、【解析】【分析】类比图1所示的算筹的表示方法解答即可.【详解】解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为 解得: 故答案为: 【点睛】本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.5、##7:12【解析】【分析】设A,B,C三种邮票的原有数量分别为a,b,c,则A,B,C三种邮票的现有数量分别为2a,3b,2c,依题意列出方程组,求解即可.【详解】解:设A,B,C三种邮票的原有数量分别为a,b,c,则A,B,C三种邮票的现有数量分别为2a,3b,2c,由题意得:,由②得:,即③;把③代入①得:,整理得:,即,把代入③得:,∵A邮票原有数量与三种邮票原有总数量之比为,∴,∴A邮票原有数量与三种邮票原有总数量之比为,故答案为:.【点睛】本题主要考查了列三元一次方程组的应用,列代数式,求代数式的值,关键是正确设元,并列出方程组.三、解答题1、.【分析】利用加减消元法求出方程组的解得到x与y的值,代入方程计算即可求出a的值.【详解】解:方程组,②+①得:,解得:,代入①中,解得:,把,代入方程得,,解得:.【点睛】此题考查了加减消元法解二元一次方程组,以及二元一次方程的解,解一元一次方程,方程组的解即为能使方程组中两方程成立的未知数的值.2、(1),;(2) ,【分析】(1)根据方程组的解的定义,应满足方程②,x=2,y=1应满足方程①,将它们分别代入方程②①,就可得到关于a,b的二元一次方程组,解得a,b的值;(2)将a,b代入原方程组,求解即可.【详解】解:(1)将代入②得,解得: 将x=2,y=1代入①得,解得: ,∴,;(2)方程组为:,①+②得: , ,解得: ,将代入①得: , ,解得: ,∴方程组的解为 .【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能把二元一次方程组转化成一元一次方程是解(1)的关键,能求出a、b的值是解(2)的关键.3、.【分析】将方程②变形为2(4x-3y)-y=18,再将4x-3y=6整体代入即可求方程组.【详解】解:中,将②变形,得:8x-6y-y=18即2(4x-3y)-y=18③,将①代入③得,2×6-y=18,∴y=-6,将y=-6代入①得,x=-3,∴方程组的解为.【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法和代入消元法解二元一次方程组,体会整体思想解方程组的便捷是解题的关键.4、.【分析】将①×10,②×6,进而根据加减消元法解二元一次方程组即可【详解】解:①×10,②×6,得③×3-④,得11y=33,解得y=3.将y=3代入③,解得x=4.所以原方程组的解为【点睛】本题考查了解二元一次方程,先将方程组中未知数的系数化为整数是解题的关键.5、(1)A品牌矿泉水400箱,B品牌矿泉水200箱;(2)7800元【分析】(1)设该大型超市购进A品牌矿泉水x箱,B品牌矿泉水y箱,根据该超市购进A、B两种品牌的矿泉水共600箱且共花费15000元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用总利润=每箱的销售利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设该大型超市购进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意得:,解得:.答:该大型超市购进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)(元).答:全部销售完600箱矿泉水,该超市共获得7800元利润.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课后复习题,共20页。试卷主要包含了下列方程组为二元一次方程组的是,用代入消元法解关于,二元一次方程组的解是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后作业题,共19页。试卷主要包含了下列各式中是二元一次方程的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步测试题,共19页。