


北京课改版七年级下册第九章 数据的收集与表示综合与测试测试题
展开
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试测试题,共18页。试卷主要包含了下列说法中正确的个数是个.,某中学七等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某校在计算学生的数学总评成绩时,规定期中考试成绩占,期末考试成绩占,林琳同学的期中数学考试成绩为分,期末数学考试成绩为分,那么他的数学总评成绩是( )
A.分B.分C.分D.分
2、下列说法中:①除以一个数等于乘以这个数的倒数;②用四个圆心角都是的扇形,一定可以拼成一个圆;③把5克盐放入100克水中,盐水的含盐率是5%;④如果小明的体重比小方体重少,那么小方体重比小明体重多25%;⑤扇形统计图可以直观地表示各部分数量与总数之间的关系.其中正确说法的个数是( )
A.1个B.2个C.3个D.4个
3、小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是( )
A.1B.2C.0D.-1
4、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的( )
A.中位数B.方差C.平均数D.众数
5、如果在一组数据中23,25,28,22出现的次数依次为2,5,3,4,并且没有其他的数据,则这组数据的众数是( )
A.5B.4.5C.25D.24
6、下列说法中正确的个数是( )个.
①a表示负数;
②若|x|=x,则x为正数;
③单项式的系数是;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4;
⑤了解全市中小学生每天的零花钱适合抽样调查;
⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查.
A.1B.2C.3D.4
7、某中学七(1)班的6位同学在课间体育活动时进行一分钟跳绳比赛,成绩(单位:个)如下:122,146,134,146,152,121.这组数据的众数和中位数分别是( )
A.152,134B.146,146C.146,140D.152,140
8、鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的( )
A.平均数B.众数C.中位数D.众数或中位数
9、以下是某校九年级10名同学参加学校演讲比赛的统计表:
则这组数据的中位数和众数分别为( )
A.90,89B.90,90C.90,90.5D.9
10、如图为成都市部分区县森林覆盖率统计图.其中,森林覆盖率低于的区县有( )
A.1个B.2个C.3个D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、很多中学生不能注意用眼卫生,小明和几位同学一起对全校3200名学生的视力状况进行了调查,并绘制了扇形统计图,则全校视力500度以上的学生有_____人.
2、某班同学进行知识竞赛,将所得成绩整理成如图所示的统计图,则这次竞赛成绩的众数是_____分.
3、一组数据:6,4,10的权数分别是2,5,1,则这组数据的加权平均数是______.
4、若、、的平均数为,则、、的平均数为______.
5、某中学举行一次演讲比赛,分段统计参赛同学的成绩,结果如下表(分数均为整数,满分为100分):请根据表中提供的信息,解答下列各题:
(1)参加这次演讲比赛的同学共有________人;
(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________.
三、解答题(5小题,每小题10分,共计50分)
1、下面是我国近几届奥运会所获金牌数,请指出其中的众数.
2、根据下列统计图,写出相应分数的平均数、众数和中位数.
(1)
(2)
3、某调查小组采用简单随机抽样方法,对我校部分学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:
(1)该调查小组抽取的样本容量为______;中位数为______.
(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全条形统计图;
(3)请估计我校学生一天中阳光体育运动的平均时间.
4、两个人群A,B的年龄(单位;岁)如下:
A:13,13,14,15,15,15,15,16,17,17;
B:3,4,4,5,5,6,6,6,54,57.
(1)人群A年龄的平均数、中位数和众数分别是多少?你认为用哪个数据可以较好地描述该人群年龄的集中趋势?
(2)人群B年龄的平均数、中位数和众数分别是多少?你认为用哪个数据可以较好地描述该人群年龄的集中趋势?
5、体育老师对七年级男生进行引体向上测验,以做7个为标准,超过的个数用正数表示,不足的个数用负数表示,下表是第四小组7名男生的成绩记录:
(1)将上表中各人与标准个数的差值按从低到高的顺序进行排列;
(2)成绩最差的是谁?他与最好成绩相差多少?
(3)平均每人做了多少个引体向上?
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
根据加权平均数的计算方法列式计算即可.
【详解】
解:他的数学总评成绩是分,
故选:D.
【点睛】
本题主要考查加权平均数算法,熟练掌握加权平均数的算法是解题的关键.
2、B
【解析】
【分析】
根据除法法则、圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点分析即可.
【详解】
解:①除以一个不等于零的数等于乘以这个数的倒数,故不正确;
②用四个圆心角都是且半径相等的扇形,一定可以拼成一个圆,故不正确;
③把5克盐放入100克水中,盐水的含盐率是5÷(5+100)≈4.8%,故不正确;
④设小方体重为a,则小明的体重为a.小方的体重比小明的体重多(a-a)÷a=25%,正确;
⑤扇形统计图可以直观地表示各部分数量与总数之间的关系,正确.
故选B.
【点睛】
本题考查了除法法则,圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点,掌握单位“1”的含义,百分数的意义是关键.
3、C
【解析】
【分析】
利用平均数公式计算即可.
【详解】
解:这五天的最低温度的平均值是.
故选:C.
【点睛】
此题考查平均数公式,熟记公式是解题的关键.
4、A
【解析】
【分析】
根据中位数的意义进行求解即可.
【详解】
解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,
因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.
故选:A.
【点睛】
本题考查了中位数的意义,掌握中位数的意义是解题的关键.
5、C
【解析】
【分析】
根据众数的的定义:一组数据中,出现次数最多的那个数称为众数,即可得出答案.
【详解】
解:由题意可知:25出现了5次,出现次数最多,所以众数为25.
故选:C.
【点睛】
本题主要是考查了众数的定义,熟练掌握众数的定义,是解决该题的关键.
6、B
【解析】
【分析】
直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.
【详解】
解:①a表示一个正数、0或者负数,故原说法不正确;
②若|x|=x,则x为正数或0,故原说法不正确;
③单项式﹣的系数是﹣,故原说法不正确;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;
⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;
⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.
正确的个数为2个,
故选:B.
【点睛】
本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.
7、C
【解析】
【分析】
根据众数和中位数的定义求解即可.
【详解】
解:出现了2次,出现的次数最多,
这组数据的众数是146个;
把这些数从小到大排列为:121,122,134,146,146,152,
则中位数是(个.
故选:.
【点睛】
本题考查了众数和中位数的知识,属于基础题,掌握各知识点的定义是解答本题的关键.
8、B
【解析】
【分析】
由鞋厂关心的数据,即大众买的最多的鞋号,也就是出现次数最多的数据,从而可得所构成的数据是众数.
【详解】
解:生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的众数,
故选B
【点睛】
本题考查的是众数的含义及众数表示的意义,理解众数的含义及在生活中的应用是解本题的关键.
9、B
【解析】
【分析】
先把这些数从小到大排列,根据众数及中位数的定义求出众数和中位数.
【详解】
在这一组数据中90是出现次数最多的,故众数是90,
而将这组数据从小到大的顺序排列后,处于中间位置的那个数是90、90,
那么由中位数的定义可知,这组数据的中位数是90.
故选:B.
【点睛】
本题主要考查众数与中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,若有奇数个数据,最中间的那个数,若有偶数个数据,最中间两个数的平均数,叫做这组数据的中位数,掌握众数和中位数的定义是解题的关键.
10、B
【解析】
【分析】
根据直方图即可求解.
【详解】
由图可得森林覆盖率低于的区县有新津县、青白江,共2个
故选B.
【点睛】
此题主要考查统计图的判断,解题的关键是根据直方图找到森林覆盖率低于的区县,进而求解.
二、填空题
1、224
【解析】
【分析】
根据扇形统计图可求出全校视力500度以上的学生所占的百分比,进而可得答案.
【详解】
全校视力500度以上的学生所占的百分比是1﹣10%﹣18%﹣20%﹣45%=7%,
∴全校视力500度以上的学生有7%×3200=224(人).
故答案为:224
【点睛】
本题考查扇形统计图,根据扇形统计图得出全校视力500度以上的学生所占的百分比是解题关键.
2、70
【解析】
【分析】
根据众数的定义:出现次数最多的数据为众数即可求解.
【详解】
由统计图可得这次竞赛成绩的众数是70分
故答案为70.
【点睛】
此题主要考查统计调查的应用,解题的关键是熟知众数的定义.
3、5.25
【解析】
【分析】
根据加权平均数的计算公式,列出算式,计算即可求解.
【详解】
解:∵数据:6,4,10的权数分别是2,5,1,
∴这组数据的加权平均数是(6×2+4×5+10×1)÷(2+5+1)=5.25.
故答案为5.25.
【点睛】
本题考查的是加权平均数的求法,关键是根据加权平均数的计算公式列出算式.
4、9
【解析】
【分析】
根据、、的平均数为7可得,再列出计算、、的平均数的代数式,整理即可得出答案.
【详解】
解:∵、、的平均数为7,
∴,
∴,
故答案为:9
【点睛】
本题考查计算平均数.掌握平均数的计算公式是解题关键.
5、 20 20%
【解析】
【分析】
(1)观察表格,求各段的人数的和即可;
(2)根据“优胜率=优胜的人数÷总人数×100%”进行计算即可.
【详解】
(1)参加这次演讲比赛的人数:2+8+6+4=20(人);
(2)成绩在91~100分的同学为优胜者,优胜率为:.
故答案为:20,20%.
【点睛】
本题考查了统计表,读懂统计表中的信息是解题的关键.
三、解答题
1、16
【解析】
【分析】
由题意根据众数的定义即一组数据中出现次数最多的数值进行分析即可得出答案.
【详解】
解:数据是我国近几届奥运会所获金牌数,分别为:5、16、16、28、32、51,
其中16出现次数最多,所以数据的众数为:16.
【点睛】
本题考查众数的定义,熟练掌握众数的定义即一组数据中出现次数最多的数值是解题的关键,注意有时众数在一组数中有好几个.
2、(1)平均数为3分,众数为3分,中位数为3分;(2)平均数为3.42分,众数为3分,中位数为3分
【解析】
【分析】
(1)从条形统计图中得出相应的信息,然后根据算数平均数(总分数除以总人数)、众数(出现次数最多得数)、中位数(排序后中间两个数得平均数)的算法直接进行计算即可;
(2)从扇形统计图中读取相关的信息,然后根据加权平均数、中位数、众数的计算方法计算即可.
【详解】
解:
(1)平均分数为:,
从图中可得:有21人得3分,众数为3分,
共有40人,将分数从小到大排序后,第20和21位都是3分,
∴中位数为3分,
∴平均分数为3分,众数为3分,中位数为3分;
(2)平均分数为:,
扇形统计图中分占比,大于其他分数的占比,众数为3分;
中位数在的比例中,中位数为3分;
∴平均分数为3.42分,众数为3分,中位数为3分.
【点睛】
题目主要考查算数平均数、加权平均数、众数、中位数的计算方法,根据图象得出相应的信息进行计算是解题关键.
3、(1)500;1;(2)120;图见解析;(3)1.18小时.
【解析】
【分析】
(1)利用0.5小时的人数为100人,所占比例为20%,即可求出样本容量;
(2)利用样本容量乘以1.5小时的百分数,即可求出1.5小时的人数,画图即可;
(3)计算出该市中小学生一天中阳光体育运动的平均时间即可.
【详解】
解:(1)由题意可得:0.5小时的人数为:100人,所占比例为:20%,
100÷20%=500,
∴本次调查共抽样了500名学生;
∴第250名学生的运动时间为1小时,第251名学生的运动时间为1小时,
∴中位数=;
(2)1.5小时的人数为:500×24%=120(人)
故答案为:120,
如图所示:
(3)根据题意得:,即该市中小学生一天中阳光体育运动的平均时间约1.18小时.
【点睛】
此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.
4、(1)人群A年龄的平均数、中位数、众数分别是:15岁、15岁、15岁;平均数、中位数或众数都能较好反映该人群年龄的集中趋势;(2)人群B年龄的平均数、中位数、众数分别是:15岁、5.5岁、6岁;相对而言,中位数或众数可以较好地描述该人群年龄的集中趋势.
【解析】
【分析】
(1)根据平均数、中位数和众数的定义,并且结合题意求解;
(2)根据平均数、中位数和众数的定义,并且结合题意求解.
【详解】
解:(1)人群A年龄的平均数是:(13×2+14+15×4+16+17×2)÷10=15(岁),
这10个数按从小到大的顺序排列为:13,13,14,15,15,15,15,16,17,17,中位数是:(15+15)÷2=15(岁),
15出现了4次,次数最多,所以众数是15岁;
用平均数、中位数或者众数都可以较好地描述该人群年龄的集中趋势;
(2)人群B年龄的平均数是:(3+4×2+5×2+6×3+54+57)÷10=15(岁),
这10个数按从小到大的顺序排列为:3,4,4,5,5,6,6,6,54,57,中位数是:(5+6)÷2=5.5(岁),
6出现了3次,次数最多,所以众数是6岁;
平均数受极端值的影响较大,用中位数或者众数可以较好地描述该人群年龄的集中趋势.
【点睛】
本题考查平均数、众数与中位数的意义,平均数是所有数据的和除以数据总数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是指一组数据中出现次数最多的数据.
5、(1)-3<-2<-1<0<1<2<3;(2)小刚成绩最差,他与最好成绩相差 6个;(3)平均每人做了7个引体向上
【解析】
【分析】
(1)将各人与标准个数的差值按从低到高的顺序进行排列即可;
(2)根据表格可知小刚成绩最差,他与最好成绩相差 3-(-3)= 6个;
(3)计算出每个人做的引体向上的个数后相加,求平均数即可.
【详解】
解:(1)-3<-2<-1<0<1<2<3;
(2)3-(-3)= 6,
小刚成绩最差,他与最好成绩相差 6个;
(3),
平均每人做了7个引体向上.
【点睛】
本题考查正数和负数的意义及有理数加减混合运算,求平均数,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示;理解“正”和“负”的相对性并熟练掌握有理数混合运算法则是解题关键.
成绩(分)
80
85
90
95
人数(人)
1
2
5
2
分数段(分)
61-70
71-80
81-90
91-100
人数(人)
丄
正上
正一
止
第24届
第25届
第26届
第27届
第28届
第29届
5枚
16枚
16枚
28枚
32枚
51枚
姓名
小明
小彬
小亮
小山
小强
小刚
小飞
与标准个数的差值
2
-1
0
3
-2
-3
1
相关试卷
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试同步测试题,共17页。
这是一份初中第九章 数据的收集与表示综合与测试练习题,共17页。试卷主要包含了以下调查中,适宜全面调查的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试测试题,共15页。试卷主要包含了下列调查中,适合用普查方式的是等内容,欢迎下载使用。
