初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试当堂达标检测题
展开
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试当堂达标检测题,共19页。试卷主要包含了以下调查中,适宜全面调查的是等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )A.3,3 B.3,7 C.2,7 D.7,32、以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩(分)80859095人数(人)1252则这组数据的中位数和众数分别为( )A.90,89 B.90,90 C.90,90.5 D.93、下列调查中,调查方式选择不合理的是( )A.为了了解新型炮弹的杀伤半径,选择抽样调查B.为了了解某河流的水质情况,选择普查C.为了了解神舟飞船的设备零件的质量情况,选择普查D.为了了解一批袋装食品是否含有防腐剂,选择抽样调查4、全红婵在2021年东京奥运会女子十米跳台项目中获得了冠军,五次跳水成绩分别是(单位:分):82.50,96.00,95.70,96.00,96.00,这组数据的众数和中位数分别是( )A.96.00,95.70 B.96.00,96.00C.96.00,82.50 D.95.70,96.005、以下调查中,适宜全面调查的是( )A.调查某批次汽车的抗撞击能力 B.调查某市居民日平均用水量C.调查全国春节联欢晚会的收视率 D.调查某班学生的身高情况6、空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.频数直方图7、八(3)班七个兴趣小组人数分别为4、4、5、、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是( )A.6 B.5 C.4 D.38、根据下面的两幅统计图,你认为哪种说法不合理( )A.六(2)班女生人数一定比六(1)班多 B.两个班女生人数可能同样多C.六(2)班女生人数可能比六(1)班多 D.六(2)班女生人数一定比男生多9、为了交接某校2000名学生的数学成绩,抽取了其中50名学生的数学成绩进行整理分析,这个调查过程中的样本是( )A.2000名学生的数学成绩 B.2000C.被抽取的50名学生的数学成绩 D.5010、下列调查中,适合采用全面调查的是( )A.了解一批电灯泡的使用寿命 B.调查榆林市中学生的视力情况C.了解榆林市居民节约用水的情况 D.调查“天问一号”火星探测器零部件的的质量第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、三种圆规的单价依次是15元、10元、8元,销售量占比分别为20%,50%,30%,则三种圆规的销售均价为__________元.2、已知一组数据:3、4、5、6、8、8、8、10,这组数据的中位数是_________.3、为了了解学生对《未成年人保护法》的知晓情况.某学校随机选取了部分学生进行调查,并将调查结果绘制成如图所示的扇形图.若该学校共有学生1800人.则可以估计其中对《未成年人保护法》非常清楚的学生约有 __人.4、甲乙两人参加竞聘,笔试和面试成绩的权重分别是是a,b,甲两项得分分别是90和80,乙两项得分分别是84,89,按规则最终成绩高的录取,若甲被录取,则a,b之间的关系是_____5、一组数据:4,2,3,x,1,4,3有唯一的众数4,则这组数据的平均数是___________.三、解答题(5小题,每小题10分,共计50分)1、如图是某月的日历,在此日历上用一个正方形圈出9个数(如6,7,8,13,14,15,20,21,22).(1)图中圈出的9个数的平均数是多少?直接写结果.(2)若用正方形圈出此日历中的任意9个数中,位于中心位置的数是m,那么这9个数的和是多少?这9个数的平均数是多少?(3)若用正方形圈出此日历中的9个数,这9个数的和有可能是225吗?试说明理由.2、八年级(1)班的学习委员亮亮对本班每位同学每天课外完成数学作业的时间进行了一次统计,并根据收集的数据绘制了如图的统计图(不完整),请你根据图中提供的信息,解答下面的问题:(注:每组数据包括最大值,不包括最小值.)(1)这个班的学生人数为______人;(2)将图①中的统计图补充完整;(3)完成课外数学作业的时间的中位数在______时间段内;(4)如果八年级共有学生500名,请估计八年级学生课外完成数学作业时间超过1.5小时的有多少名?3、面试时,某人的基本知识、表达能力、工作态度的得分分别是80分,70分,85分,若依次按30%,30%,40%的比例确定成绩,则这个人的面试成绩是多少?4、2020年初的新冠肺炎疫情对人们的生活造成了较人的影响,为响应教育部下发通知“停课不停学”的倡议,某校准备选用合适的软件对全校学生直播上课,经对直播软件功能进行筛选,学校选定了“钉钉”和“QQ直播”两款软件进行试用,并组织全校师生对这两款软件打分(均为整数,最高5分:最低1分),20名同学打分情况如下:钉钉54524253411354244325QQ43335534522544413232学生打分的平均数、众数、中位数如表:软件平均数众数中位数钉钉3.44 QQ直播3.35 3抽取的10位教师对“钉钉”和“QQ直播”这两款软件打分的平均分分别为3.9分和4分.请根据以上信息解答下列问题:(1)将上面表格填写完整:(2)你认为学生对这两款软件评价较高的是 ,(填“钉钉”或“QQ直播”)理由是: ;(3)学校决定选择综合平均分高的软件进行教学,其中综合平均分中教师打分占60%,学生打分占40%,请你通过计算分析学校会采用哪款软件进行教学.5、在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)请将条形统计图补充完整;(2)在扇形统计图中,C部分所对应的圆心角等于 度;(3)你觉得哪一类礼盒销售最快,请说明理由. ---------参考答案-----------一、单选题1、A【解析】【分析】根据众数、中位数的定义解答.【详解】解:读书册数的众数是3;第10个数据是3,第11个数据是3,故中位数是3,故选:A.【点睛】此题考查了统计中的众数和中位数的定义,数据定义并应用是解题的关键.2、B【解析】【分析】先把这些数从小到大排列,根据众数及中位数的定义求出众数和中位数.【详解】在这一组数据中90是出现次数最多的,故众数是90,而将这组数据从小到大的顺序排列后,处于中间位置的那个数是90、90,那么由中位数的定义可知,这组数据的中位数是90.故选:B.【点睛】本题主要考查众数与中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,若有奇数个数据,最中间的那个数,若有偶数个数据,最中间两个数的平均数,叫做这组数据的中位数,掌握众数和中位数的定义是解题的关键.3、B【解析】【分析】根据调查的不同目的来选择全面调查或抽样调查,再判断四个选项即可.【详解】解:A选项,C选项,D选项选择调查方式合理,故A选项,C选项,D选项不符合题意.B选项,为了了解某河流的水质情况,选择普查耗费人力,物力和时间较多,而选择抽样调查更加节约,且和普查的结果相差不大,故B选项符合题意.故选:B.【点睛】本题考查全面调查和抽样调查,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.4、B【解析】【分析】众数是一组数据中出现次数最多的数,在这一组数据中96.00是出现次数最多的,故众数是96.00;而将这组数据从小到大的顺序排列后,处于中间位置的那个数是这组数据的中位数.【详解】解:在这一组数据中96.00是出现次数最多的,故众数是96.00;将这组数据从小到大的顺序排列为82.50,95.70,96.00,96.00,96.00,处于中间位置的那两个数是96.00,由中位数的定义可知,这组数据的中位数是96.00.故选:B.【点睛】本题考查众数与中位数的意义,将一组数据从小到大(或从大到小)重新排列后,再求众数和中位数是解题的关键.5、D【解析】【分析】根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查省时省力,但得到的调查结果比较近似即可解答.【详解】解:A. 调查某批次汽车的抗撞击能力,调查具有破坏性,适合抽样调查,故不合题意;B. 调查某市居民日平均用水量,调查耗时耗力,适合抽样调查,故不合题意;C. 调查全国春节联欢晚会的收视率调查耗时耗力,适合抽样调查,故不合题意;D. 调查某班学生的身高情况,适合全面调查,故符合题意.故选:D【点睛】本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.6、A【解析】【分析】根据扇形统计图、折线统计图、条形统计图、频数直方图各自的特点选择即可.【详解】解:根据题意,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:A.【点睛】此题考查扇形统计图、折线统计图、条形统计图各自的特点.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.7、B【解析】【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7−4−4−5−6−6−7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:B.【点睛】本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.8、A【解析】【分析】根据两个扇形统计图,只能得到两个班级男女生比例的大小,无法确定男生和女生的具体人数,由此即可得.【详解】解:∵两个班的人数不知道,∴无法确定每个班的男生和女生的具体人数,∴六(2)班女生人数一定比六(1)班多不合理,故选:A.【点睛】题目主要考查从扇形统计图获取信息,理解题意,掌握扇形统计图表示的意义是解题关键.9、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【详解】解:A、2000名学生的数学成绩是总体,故选项不合题意;B、2000是个体的数量,故选项不合题意;C、这50名学生的数学成绩是总体的一个样本,故选项符合题意;D、50是样本容量,故选项不合题意;故选C【点睛】本题主要考查了总体、个体、样本和样本容量的定义,解题要分清具体问题中的总体、个体与样本的区别,关键是明确考查对象的范围.样本容量只是个数字,没有单位.10、D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析即可.【详解】解:A.了解一批电灯泡的使用寿命,具有破坏性,适合抽样调查,不符合题意; B.调查榆林市中学生的视力情况,适合抽样调查,不符合题意; C.了解榆林市居民节约用水的情况,适合抽样调查,不符合题意; D.调查“天问一号”火星探测器零部件的的质量,必需采用全面调查,符合题意; 故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题1、10.4【解析】【分析】代入加权平均数公式计算即可.【详解】,故填10.4.【点睛】本题考查了加权平均数,熟悉加权平均数公式是解决本题的关键.2、7【解析】【分析】将一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.【详解】解:按照从小到大的顺序排列为:3、4、4、5、6、8,8,10中位数:(6+8)÷2=7故答案为:7.【点睛】本题主要考查中位数的求解,根据中位数的定义,将数据从小到大进行排列是解决本题的关键.3、540【解析】【分析】先求出非常清楚所占的百分比,再乘以该校的总人数,即可得出答案.【详解】解:根据题意得:(人.答:可以估计其中对《未成年人保护法》非常清楚的学生约有540人.故答案为:540.【点睛】此题考查了用样本估计总体,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.4、a>1.5b【解析】【分析】先表示甲乙的加权平均分,再根据甲被录取列不等式即可.【详解】甲的加权平均分为:90a+80b乙的加权平均分为:84a+89b∵甲被录取∴甲的分数>乙的分数∴90a+80b>84a+89b,解得a>1.5b,故答案为:a>1.5b.【点睛】本题考查加权平均数,解答本题的关键是明确题意,利用加权平均数的计算方法解答.5、3【解析】【分析】根据众数的意义求出x的值,再根据平均数的计算方法进行计算即可.【详解】解:这组数据:4,2,3,x,1,4,3.有唯一的众数4,所以x=4,因此这组数据的平均数为,故答案为:3.【点睛】本题考查众数、平均数,理解众数、平均数的意义,掌握众数、平均数的计算方法是正确解答的关键.三、解答题1、(1)14;(2),;(3)不能,见解析【解析】【分析】(1)直接计算图中圈出的9个数的平均数即可;(2)中间一个数为m,则其中8个数为:,,,,m,,,,,相加即可得到这9个数的和是多少,9个数的和除以即可得到这个数的平均数;(3)用,结合日历可得结果.【详解】解:(1)9个数的平均数为:;(2)中间一个数为m,则其中8个数为:,,,,m,,,,,它们的和为:,这9个数的平均数为.(3)不能,理由如下:若圈出的数和为225,则,则位于中心位置的数是25,由图观察发现,无以25为中心的能圈出9个数的正方形,故不能.【点睛】本题考查了列代数式以及整式的加减,读懂题意,根据题意得出日历中的任意9个数的代数式是解本题的关键.2、(1)40;(2)补图见解析;(3)1~1.5;(4)125名.【解析】【分析】(1)利用1~1.5小时的频数和百分比即可求得总数;(2)根据总数可计算出时间在0.5~1小时的人数,从而补全图形;(3)根据中位数的定义得到完成作业时间的中位数是第20个数和第21个数的平均数,而0.5-1有12人,1-1.5有18人,即可得到中位数落在1-1.5h内;(4)用七年级共有的学生数乘以完成作业时间超过1.5小时的人数所占的百分比即可.【详解】解:(1)(1)根据题意得:该班共有的学生是:=40(人);这个班的学生人数为40人;(2)0.5~1小时的人数是:40×30%=12(人),如图: (3)共有40名学生,完成作业时间的中位数是第20个数和第21个数的平均数,即中位数在1-1.5小时内;(4)∵超过1.5小时有10人,占总数的.∴答:估计八年级学生课外完成数学作业时间超过1.5小时的有125名.【点睛】本题考查了条形统计图:条形统计图反映了各小组的频数,并且各小组的频数之和等于总数.也考查了扇形统计图、中位数的概念.3、这个人的面试成绩是79分.【解析】【分析】根据加权平均数定义计算可得.【详解】解:这个人的面试成绩是80×30%+70×30%+85×40%=79(分),答:这个人的面试成绩是79分.【点睛】本题主要考查了加权平均数的计算,掌握加权平均数的定义是解题的关键.4、(1)4,3;(2)钉钉,钉钉软件得分的平均数、众数和中位数均大于QQ直播;(3)学校会采用QQ直播软件进行教学,见解析【解析】【分析】(1)将20名学生对钉钉直播软件的评分重新排列,再根据中位数的定义求解即可;根据众数的定义可得20名学生对钉钉直播软件的评分的众数;(2)比较平均数、众数和中位数的大小即可得出答案;(3)根据加权平均数的定义分别计算出钉钉软件和QQ直播软件的最终得分,比较大小即可得出答案.【详解】解:(1)将20名学生对钉钉直播软件的评分排列如下:1,1,2,2,2,2,3,3,3,4,4,4,4,4,4,5,5,5,5,5,其中位数为=4,20名学生对钉钉直播软件的评分次数最多的是3分,有6次,所以其众数为3,补全表格如下:软件平均数众数中位数钉钉3.444QQ直播3.3533 故答案为:4、3;(2)认为学生对这两款软件评价较高的是钉钉,理由是:钉钉软件得分的平均数、众数和中位数均大于QQ直播,故答案为:钉钉,钉钉软件得分的平均数、众数和中位数均大于QQ直播.(3)钉钉软件的最终得分为3.9×60%+3.4×40%=3.7(分),QQ直播软件的最终得分为4×60%+3.35×40%=3.74(分),∵3.74>3.7,∴学校会采用QQ直播软件进行教学.【点睛】本题主要考查中位数、众数及平均数,熟练掌握求一组数据的众数、中位数及平均数是解题的关键.5、(1)见解析;(2)72;(3)A类礼盒销售最快,理由见解析【解析】【分析】(1)求出销售的C类礼盒的数量,即可补全条形统计图;(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;(3)比较四类礼盒销售的数量即可得出答案.【详解】解:(1)1000×50%-168-80-150=102(盒),补全条形统计图如图所示:(2)360°×(1-35%-25%-20%)=72°,故答案为:72;(3)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,因此,A类礼盒销售最快.【点睛】本题考查条形统计图、扇形统计图,理解统计图中各个数量之间的关系是解决问题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试巩固练习,共20页。试卷主要包含了下列调查中,最适合全面调查,山西被誉为“表里山河”,意思是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试测试题,共19页。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课堂检测,共19页。试卷主要包含了下列做法正确的是等内容,欢迎下载使用。