数学七年级下册第九章 数据的收集与表示综合与测试课时练习
展开
这是一份数学七年级下册第九章 数据的收集与表示综合与测试课时练习,共19页。试卷主要包含了为了解学生参加体育锻炼的情况,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某校在计算学生的数学总评成绩时,规定期中考试成绩占,期末考试成绩占,林琳同学的期中数学考试成绩为分,期末数学考试成绩为分,那么他的数学总评成绩是( )A.分 B.分 C.分 D.分2、5G是新一代信息技术的发展方向和数字经济的重要基础,预计我国5G商用将直接创造更多的就业岗位.小明准备到一家公司应聘普通员,他了解到该公司全体员工的月收入如下:月收入/元4500019000100005000450030002000人数12361111对这家公司全体员工的月收入,能为小明提供更为有用的信息的统计量是( )A.平均数 B.众数 C.中位数 D.方差3、如果你和其余6人进入了八年级速算比赛的总决赛,你想知道自己是否能进入前3名,只需要了解自己的成绩以及全部成绩的( )A.平均数 B.众数 C.中位数 D.方差4、下列调查中,最适合采用抽样调查的是( )A.调查一批防疫口罩的质量B.调查某校九年级学生的视力C.对乘坐某班次飞机的乘客进行安检D.国务院于2020年11月1日开展的第七次全国人口调查5、为了解学生参加体育锻炼的情况、现将九年级(1)班同学一周的体育锻炼情况绘制成如图所示不完整的条形统计图,已知锻炼7小时的人数占全班总人数的20%,则下列结论正确的是( )A.九年级(1)班共有学生40名 B.锻炼时间为8小时的学生有10名C.平均数是8.5小时 D.众数是8小时6、八(3)班七个兴趣小组人数分别为4、4、5、、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是( )A.6 B.5 C.4 D.37、已知一组数据85,80,x,90的平均数是85,那么x等于( )A.80 B.85 C.90 D.958、某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的期中数学成绩进行了统计,下面判断中不正确的有( )A.这种调查的方式是抽样调查 B.800名学生是总体C.每名学生的期中数学成绩是个体 D.100名学生的期中数学成绩是总体的一个样本9、下列调查中,最适合采用全面调查(普查)方式的是( )A.对兰州市初中生每天阅读时间的调查 B.对市场上大米质量情况的调查C.对华为某批次手机防水功能的调查 D.对某班学生肺活量情况的调查10、下列说法中正确的是( )A.对“神舟十三号载人飞船”零部件的检查,采用抽样调查的方式B.为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生是所抽取的一个样本C.为了了解全市中学生的睡眠情况,应该采用普查的方式D.为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一组数据由五个正整数组成,中位数是2,众数是2,且最大的数小于3,则这组数据之和的最小值是____________.2、一组数据25,29,20,x,14,它的中位数是23,则这组数据的平均数为______.3、一个扇形统计图中,某部分占总体的百分比为13%,则该部分所对扇形圆心角为______.4、某校欲招聘一名数学教师,学校对甲乙丙三位候选人进行三项能力测试,各项成绩满分均为100分,根据结果择优录用,三位候选人测试成绩如表:测试项目成绩甲乙丙教学能力777373科研能力707165组织能力647284根据实际需要学校将三项能力测试得分按6:2:2的比例确定每人的成绩,将被录用的是________5、为了了解学生对《未成年人保护法》的知晓情况.某学校随机选取了部分学生进行调查,并将调查结果绘制成如图所示的扇形图.若该学校共有学生1800人.则可以估计其中对《未成年人保护法》非常清楚的学生约有 __人.三、解答题(5小题,每小题10分,共计50分)1、某音像制品店某一天的销售的情况如图:(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?2、某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如表:(单位:分)项目应聘者阅读能力思维能力表达能力甲938673乙958179(1)甲、乙两人“三项测试”的平均成绩分别为______分、_______分.(2)根据实际需要,公司将阅读能力、思维能力和表达能力三项测试成绩按3∶5∶2的比确定每位应聘者的最后成绩,若按此成绩在甲、乙两人中录用高分的一个,谁将被录用?3、一段时间内,一家鞋店销售了某种品牌的女鞋30双,各种尺码的销售量如下表所示:尺码/cm2222.52323.52424.525销售量/双12511731(1)求出这30双女鞋尺码的平均数(结果精确到0.01cm)、中位数和众数;(2)在(1)中求出的三个数据中,你认为鞋店老板最感兴趣的是哪一个?说说你的理由.4、某校组织初三学生电脑技能竞赛,每班选派相同人数去参加竞赛,竞赛成绩分A、B、C、D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.将初三(1)班和(2)班的成绩整理并绘制成统计图如下: 平均数(分)中位数(分)众数(分)1班87.590③2班①②100(1)此次竞赛中(2)班成绩在C级以上(包括C级)的人数为 ;(2)请你将表格补充完整;(3)试运用所学的统计知识,从两个不同角度评价初三(1)班和初三(2)班的成绩.5、小明想调查某个高速公路入口处每天的汽车流量(单位:辆).一天,他从上午8:00~11:00在该入口处,每隔相等的一段时间作一次统计,共统计了8次,数据如下:记录的次数第一次第二次第三次第四次第五次第六次第七次第八次3min内通过的汽车流量5150646258555553试估计:这天上午这3h内共有多少车次通过该入口? ---------参考答案-----------一、单选题1、D【解析】【分析】根据加权平均数的计算方法列式计算即可.【详解】解:他的数学总评成绩是分,故选:D.【点睛】本题主要考查加权平均数算法,熟练掌握加权平均数的算法是解题的关键.2、B【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然小明想了解到该公司全体员工的月收入,那么应该是看多数员工的工资情况,故值得关注的是众数.【详解】解:由于众数是数据中出现次数最多的数,故小明应最关心这组数据中的众数.故选:B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.3、C【解析】【分析】根据题意可得:由中位数的概念,可知7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前3名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有7个人,第4位选手的成绩是中位数,要判断是否进入前3名,故应知道自己的成绩和中位数. 故选:C.【点睛】本题考查的是中位数的含义,以及利用中位数作判断,理解中位数的含义是解本题的关键.4、A【解析】【分析】根据抽样调查和普查的定义进行求解即可.【详解】解:A.调查一批防疫口罩的质量,适合抽样调查,故选项符合题意;B.调查某校九年级学生的视力,适合全面调查,故选项不符合题意;C.对乘坐某班次飞机的乘客进行安检,适合全面调查,故选项不符合题意;D.国务院于2020年11月1日开展的第七次全国人口调查,适合全面调查,故选项不符合题意;故选A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、D【解析】【分析】根据频数之和等于总数,频数定义,加权平均数的计算,众数的定义逐项判断即可求解.【详解】解:A. 九年级(1)班共有学生10+20+15+5=50名,故原选项判断错误,不合题意;B. 锻炼时间为8小时的学生有20名,故原选项判断错误,不合题意;C. 平均数是小时,故原选项判断错误,不合题意;D. 众数是8小时,故原选项判断正确,符合题意.故选:D【点睛】本题考查了频数、加权平均数、众数等知识,理解相关概念,看到条形图是解题关键.6、B【解析】【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7−4−4−5−6−6−7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:B.【点睛】本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.7、B【解析】【分析】由平均数的公式建立关于x的方程,求解即可.【详解】解:由题意得:(85+x+80+90)÷4=85解得:x=85.故选:B.【点睛】本题考查了平均数,应用了平均数的计算公式建立方程求解.8、B【解析】【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体.本题考查的对象是七年级800名学生期中数学考试情,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【详解】解:A、题中的调查方式为抽样调查,选项正确,不符合题意;B、总体为800名学生的期中数学成绩,而不是学生,选项错误,符合题意;C、每名学生的期中数学成绩是个体,选项正确,不符合题意;D、100名学生的期中数学成绩是总体的一个样本,选项正确,不符合题意;故选B【点睛】本题主要考查了总体、个体与样本,解题要分清具体问题中的总体、个体与样本.关键是明确考查的对象,总体、个体与样本的考察对象是相同的,所不同的是范围的大小.9、D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、对兰州市初中生每天阅读时间的调查,工作量大,不易普查;B、对市场上大米质量情况的调查,调查具有破坏性,不易普查;C、对华为某批次手机防水功能的调查,调查具有破坏性,不易普查;D、对某班学生肺活量情况的调查,人数较少,适合普查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、D【解析】【分析】根据全面调查、抽样调查、样本和样本容量判断即可.【详解】A、∵为了安全,对“神舟十三号载人飞船”零部件的检查必须逐个检查.对“神舟十三号载人飞船”零部件的检查,不能采用抽样调查的方式,应该采用普查的方式,故A错误;B、根据样本的定义可知:为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生的身高信息是所抽取的一个样本,故B错误;C、∵全市中学生人数太多,为了了解全市中学生的睡眠情况,不应该采用普查的方式,应该采用抽样调查的方式,故C错误;D、根据样本容量的定义可知:“为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200”是正确的,故D正确;故选:D【点睛】本题考查简单随机抽样,样本和样本容量等相关概念,掌握相关的概念是解答此题的关键.二、填空题1、8【解析】【分析】将这组数据从小到大培训,处于中间位置的那个数是中位数即是2,众数则是数据中出现次数最多的数,根据题意计算即可;【详解】根据题意可得这组数据中由两个数为2,前面两个数为小于2的整数,均为1,又最大的数小于3,∴最后两个数均为2,∴可得这组数据和的最小值为;故答案是8.【点睛】本题主要考查了中位数和众数的应用,准确计算是解题的关键.2、22.2【解析】【分析】由中位数的定义“将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据”即可判断出x的值,再利用求平均数的公式求出结果即可.【详解】∵这组数据由5个数组成,为奇数个,且中位数为23,∴,∴这组数据为25,29,20,23,14,∴这组数据的平均数. 故答案为:22.2.【点睛】本题考查中位数,求平均数.掌握中位数的定义和求平均数公式是解答本题的关键.3、46.8°【解析】【分析】利用占总体的百分比是,则这部分的圆心角是360度的,即可求出结果.【详解】解:该部分所对扇形圆心角为:.故答案为:.【点睛】本题考查扇形统计图中扇形所对圆心角的度数与百分比的关系,熟练掌握扇形所对圆心角的计算方法是解题关键.4、丙【解析】【分析】根据加权平均数的定义求解即可,分别求得甲乙丙三人的平均成绩,进而即可判断,加权平均数计算公式为:,其中代表各数据的权.【详解】三项能力测试得分按6:2:2的比例,三项能力的权分别为:0.6,0.2,0.2,甲,乙,丙,.将被录用的是丙.故答案为:丙.【点睛】本题考查了求加权平均数,掌握加权平均数的定义是解题的关键.5、540【解析】【分析】先求出非常清楚所占的百分比,再乘以该校的总人数,即可得出答案.【详解】解:根据题意得:(人.答:可以估计其中对《未成年人保护法》非常清楚的学生约有540人.故答案为:540.【点睛】此题考查了用样本估计总体,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.三、解答题1、(1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为;(2)应将0作为纵轴上销售量的起始值.【解析】【分析】(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可.(2)根据条形统计图的特点回答即可.【详解】解:(1)从条形统计图看,民歌类唱片销售量为:80(张),流行歌曲唱片销售量为:120(张),∴民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.2、(1)84;85;(2)甲将被录用.【解析】【分析】(1)由题意根据平均数的计算公式分别进行计算即可;(2)由题意根据加权平均数的计算公式分别进行解答即可.【详解】解:(1)甲的平均成绩为(93+86+73)÷3=84(分),乙的平均成绩为(95+81+79)÷3=85(分).(2)依题意,得:甲的成绩为:(分),乙的成绩为:(分),∵85.5>84.8,∴甲将被录用.【点睛】本题考查加权平均数和算术平均数的知识,注意掌握利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3、(1)这30双女鞋尺码的平均数、中位数和众数分别是23.57cm,23.5сm,23.5сm;(2)众数,理由见解析【解析】【分析】(1)把给出的这30个数据加起来再除以30就是这30双女鞋尺码的平均数;把给出的此组数据中的数按从小到大(或从大到小)的顺序排列,处于最中间的两个数的平均数就是这30双女鞋尺码的中位数;这组数据中出现次数最多的那个数就是这30双女鞋尺码的众数;(2)鞋店老板最关心哪种尺码的鞋子最畅销,所关心的即为众数.【详解】解:(1)(22×1+22.5×2+23×5+23.5×11+24×7+24.5×3+25×1)÷30=707÷30≈23.57(cm),∴这30双女鞋尺码的平均数约为23.57cm;∵共有30个数据,∴中位数为由小到大的排列中第15个和第16个的平均数,由表格可知:第15个和第16个数均为23.5,∴这30双女鞋尺码的中位数为(23.5+23.5)÷2=23.5(cm);由表格可知:此组数据中出现次数最多的是23.5,∴这30双女鞋尺码的众数是23.5cm,答:这30双女鞋尺码的平均数、中位数和众数分别是23.57cm,23.5сm,23.5сm;(2)对鞋店老板而言,他需要考虑各种尺码鞋子的进货数量.大多数人的鞋子尺码所对应的货就要多进,少数人鞋子尺码对应的货就要少进些,因此,在这三个数据中,鞋店老板最感兴趣的是众数.【点睛】此题主要考查了求平均数、中位数、众数的方法的运用,熟练掌握平均数、中位数和众数的定义是解题的关键.4、(1)17人;(2)①88;②85;③90;(2)答案不唯一,见解析【解析】【分析】(1)根据(1)班求得参加竞赛的人数,再根据(2)班成绩在C级以上的比重求解即可;(2)根据众数、中位数以及平均数的方法,求解即可;(3)从平均数、众数以及中位数等方面对两个班进行评价即可.【详解】解:(1)参加竞赛的人数有:(人)初三(2)班成绩在C级以上所占的比重为则人数有(人)故答案为17人 (2)根据题意可得:(2)班的平均成绩为70分的人数有人80分的人数有人90分的人数有人参加竞赛的人数为人,从小到大取第10、11位的成绩,其平均数为∴(2)班的中位数为观察统计图可以得出,(1)班的80分的人数有9人,最多,∴众数为90故答案为①88;②85;③90;(3)角度1:因为(2)班成绩的平均数、众数比(1)班高,所以(2)班的成绩比(1)班好角度2:因为(1)班成绩的中位数比(2)班高,所以(1)班的成绩比(2)班好【点睛】此题考查了统计的综合应用,涉及了统计量的计算以及统计量的意义,解题的关键是从统计图中获取到相关的量.5、3360车次【解析】【分析】根据表中数据先计算出每3min的平均汽车流量,然后计算总的时间通过的车次即可.【详解】解:每3min的平均汽车流量为:(辆).所以,可以估计这天上午这3h通过该入口的车次大约为:(车次),答:这天上午3h内共有3360车次通过该入口.【点睛】题目主要考查平均数的实际应用,利用平均数据求出总数,理解题意中利用平均数求总数据的大小是解题关键.
相关试卷
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评,共20页。试卷主要包含了下列说法中正确的是,某教室9天的最高室温统计如下等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课后作业题,共21页。试卷主要包含了数据,,,,,的众数是,下列说法中正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试一课一练,共19页。试卷主要包含了下列做法正确的是等内容,欢迎下载使用。