2020-2021学年第八章 因式分解综合与测试习题
展开
这是一份2020-2021学年第八章 因式分解综合与测试习题,共16页。试卷主要包含了下列因式分解正确的是.等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多项式中有因式x﹣1的是( )①x2+x﹣2;②x2+3x+2;③x2﹣x﹣2;④x2﹣3x+2A.①② B.②③ C.②④ D.①④2、下列多项式不能用公式法因式分解的是( )A. B. C. D.3、下列等式从左到右的变形,属于因式分解的是( )A. ﹣2x﹣1= B.(a+b)(a﹣b)=C.﹣4x+4= D.﹣1=4、下列各组多项式中,没有公因式的是( )A.ax﹣by和by2﹣axy B.3x﹣9xy和6y2﹣2yC.x2﹣y2和x﹣y D.a+b和a2﹣2ab+b25、下列各式中从左到右的变形中,是因式分解的是( )A. B.C. D.6、下列各式中,能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.﹣a2+b2 C.a2+(﹣b)2 D.a3﹣ab37、如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是( )A.2 B.3 C.4 D.58、下列因式分解正确的是( ).A. B.C. D.9、如图,在边长为的正方形中挖掉一个边长为的小正方形,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是( )A. B.C. D.10、下列各式能用公式法因式分解的是( ).A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:(1)______; (2)______;(3)______; (4)______.2、已知,,则代数式的值为______.3、因式分解:______.4、若x+y=2,xy=-3,则x2y+xy2的值为______.5、把多项式3a2﹣6a+3因式分解得 ___.三、解答题(5小题,每小题10分,共计50分)1、因式分解:(1) (2)2、分解因式(1) (2)(3)3、(1)计算:x(x2y2﹣xy)÷x2y;(2)分解因式:3bx2+6bxy+3by2.4、分解因式(1) (2)5、分解因式:a3﹣a2b﹣4a+4b. ---------参考答案-----------一、单选题1、D【解析】【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:①x2+x﹣2=;②x2+3x+2=;③x2﹣x﹣2=;④x2﹣3x+2=.∴有因式x﹣1的是①④.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.2、C【解析】【分析】A、B选项考虑利用完全平方公式分解,C、D选项考虑利用平方差公式分解.【详解】解:A.a2-8a+16=(a-4)2,故选项A不符合题意;B. ,故选项B不符合题意;C. -a2-9不是平方差的形式,不能运用公式法因式分解,故选项C符合题意;D. ,故选项D不符合题意;故选C【点睛】本题考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.3、C【解析】【分析】根据因式分解的定义和方法逐一判断即可.【详解】∵=﹣2x+1≠﹣2x﹣1,∴A不是因式分解,不符合题意;∵(a+b)(a﹣b)=不符合因式分解的定义,∴B不是因式分解,不符合题意;∵﹣4x+4=,符合因式分解的定义,∴C是因式分解,符合题意;∵﹣1≠,不符合因式分解的定义,∴D不是因式分解,不符合题意;故选C.【点睛】本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键.4、D【解析】【分析】直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【详解】解:A、by2−axy=−y(ax−by),故两多项式的公因式为:ax−by,故此选项不合题意;B、3x−9xy=3x(1−3y)和6y2−2y=−2y(1−3y),故两多项式的公因式为:1−3y,故此选项不合题意;C、x2−y2=(x−y)(x+y)和x−y,故两多项式的公因式为:x−y,故此选项不合题意;D、a+b和a2−2ab+b2=(a−b)2,故两多项式没有公因式,故此选项符合题意;故选:D.【点睛】此题主要考查了公因式,掌握确定公因式的方法是解题关键.5、C【解析】【分析】由题意依据因式分解的定义即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】解:A、,是整式的乘法,不是因式分解故A错误;B、,是整式不是因式分解;C、,是因式分解;D、右边不是整式的积的形式(含有分式),不是因式分解;故选:C.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.6、B【解析】【分析】能用平方差公式分解因式的式子必须是两项是平方项,符号为异号.【详解】解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;B、,能用平方差公式分解因式,故此选项正确;C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;D.提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误.故选B.【点睛】本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平方项(或变性后具备平方项)是解题的关键.7、C【解析】【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.8、C【解析】【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误.故选:C.【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.9、A【解析】【分析】左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.【详解】解:由题意可得:a2−b2=(a−b)(a+b).故选:A.【点睛】此题主要考查了乘法的平方差公式,属于基础题型.10、A【解析】【分析】利用完全平方公式和平方差公式对各个选项进行判断即可.【详解】解:A、,故本选项正确;B、x2+2xy-y2 一、三项不符合完全平方公式,不能用公式法进行因式分解,故本选项错误;C、x2+xy-y2中间乘积项不是两底数积的2倍,不能用公式法进行因式分解,故本选项错误;D、-x2-y2不符合平方差公式,不能用公式法进行因式分解,故本选项错误.故选:A.【点睛】本题考查了公式法分解因式,能用完全平方公式进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍,熟记公式结构是求解的关键.二、填空题1、 【解析】【分析】把一个多项式化成几个整式积的形式叫做这个多项式的因式分解,由此定义因式分解即可.【详解】(1)由平方差公式有(2)由完全平方公式有(3)提取公因式a有(4)由十字相乘法分解因式有故答案为:;;;.【点睛】本题考查了因式分解,常见因式分解的方式有运用平方差公式、运用完全平方公式、提取公因式、十字相乘法,灵活选择因式分解的方式是解题的关键.2、12【解析】【分析】把因式分解,再代入已知的式子即可求解.【详解】∵,,∴∴===3×4=12故答案为:12.【点睛】此题主要考查代数式求值,运用完全平方公式因式分解,解题的关键是熟知因式分解的运用.3、【解析】【分析】先提取公因式,再用完全平方公式分解即可.【详解】解:,=,=故答案为:.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解.4、-6【解析】【分析】先提取公因式 再整体代入求值即可.【详解】解: x+y=2,xy=-3, 故答案为:【点睛】本题考查的是因式分解的应用,掌握“利用因式分解的方法求解代数式的值” 是解题的关键.5、3(a-1)2【解析】【分析】首先提取公因式3,再利用完全平方公式分解因式.【详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2,故答案为:3(a-1)2.【点睛】本题主要考查了综合提公因式和公式法分解因式,熟记公式结构是解题的关键.三、解答题1、(1);(2)【解析】【分析】(1)先提取公因式 再利用平方差公式分解因式即可;(2)先计算整式的乘法运算,再利用完全平方公式分解因式即可.【详解】解:(1) (2)【点睛】本题考查的是综合提公因式与公式法分解因式,掌握“利用平方差公式与完全平方公式分解因式”是解本题的关键.2、(1);(2);(3)【解析】【分析】(1)原式提取公因式后,利用平方差公式分解即可;(2)原式先利用完全平方公式,再利用平方差公式分解即可;(3)原式利用平方差公式分解即可.【详解】解:(1)a;(2);(3)【点睛】本题考查的是因式分解,掌握提公因式与公式法,分组分解法分解因式是解题的关键.3、(1)xy-1;(2)3b(x+y)2.【解析】【分析】(1)先计算单项式乘多项式,再计算多项式除以单项式,即可;(2)先提取公因式3b,再利用完全平方公式继续分解即可.【详解】解:(1)x(x2y2﹣xy)÷x2y=(x3y2-x2y)÷x2y=x3y2÷x2y -x2y÷x2y=xy-1;(2)3bx2+6bxy+3by2=3b(x2+2xy+y2)=3b(x+y)2.【点睛】本题考查了单项式乘多项式,多项式除以单项式以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.4、(1);(2).【解析】【分析】(1)先提公因式,然后利用平方差公式因式分解即可;(2)利用提公因式法分解因式即可.【详解】(1)解:原式;(2)解:原式.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.5、(a﹣b)(a+2)(a﹣2)【解析】【分析】先分组,再提公因式,最后用平方差公式进一步进行因式分解.【详解】解:a3﹣a2b﹣4a+4b=(a3﹣4a)﹣(a2b﹣4b)=a(a2﹣4)﹣b(a2﹣4)=(a﹣b)(a2﹣4)=(a﹣b)(a+2)(a﹣2).【点睛】本题考查了因式分解法中的分组法、提公因式法、平方差公式的综合应用,正确地进行分组,找到公因式,并且注意因式分解要彻底,这是解题的关键.
相关试卷
这是一份数学七年级下册第八章 因式分解综合与测试当堂检测题,共16页。试卷主要包含了若x2+ax+9=,下列多项式,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
这是一份初中第八章 因式分解综合与测试练习题,共16页。试卷主要包含了下列因式分解正确的是,下列各式的因式分解中正确的是,把分解因式的结果是.等内容,欢迎下载使用。
这是一份初中北京课改版第八章 因式分解综合与测试练习,共15页。试卷主要包含了因式分解等内容,欢迎下载使用。