2021学年第26章 概率初步综合与测试测试题
展开沪科版九年级数学下册第26章概率初步章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )
A. B. C. D.
2、任意掷一枚骰子,下列事件中:①面朝上的点数小于1;②面朝上的点数大于1;③面朝上的点数大于0,是必然事件,不可能事件,随机事件的顺序是( )
A.①②③ B.①③② C.③②① D.③①②
3、下列事件是必然事件的是( )
A.抛一枚硬币正面朝上
B.若a为实数,则a2≥0
C.某运动员射击一次击中靶心
D.明天一定是晴天
4、下列说法错误的是( )
A.必然事件发生的概率是1 B.不可能事件发生的概率为0
C.随机事件发生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能发生
5、下列关于随机事件的概率描述正确的是( )
A.抛掷一枚质地均匀的硬币出现“正面朝上”的概率为0.5,所以抛掷1000次就一定有500次“正面朝上”
B.某种彩票的中奖率为5%,说明买100张彩票有5张会中奖
C.随机事件发生的概率大于或等于0,小于或等于1
D.在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率
6、下列说法正确的是( )
A.“经过有交通信号的路口遇到红灯”是必然事件
B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次
C.“心想事成,万事如意”描述的事件是随机事件
D.天气预报显示明天为阴天,那么明天一定不会下雨
7、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( )
A. B. C. D.1
8、下列事件中,属于必然事件的是( )
A.小明买彩票中奖 B.在一个只有红球的盒子里摸球,摸到了白球
C.任意抛掷一只纸杯,杯口朝下 D.三角形两边之和大于第三边
9、在一个不透明的袋中装有仅颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤……如表是实验中记录的部分统计数据:
摸球次数 | 10 | 40 | 80 | 200 | 500 | 800 |
摸到红球次数 | 3 | 16 | 20 | 40 | 100 | 160 |
摸到红球的频率 | 0.3 | 0.4 | 0.25 | 0.2 | 0.2 | 0.2 |
则袋中的红球个数可能有( )
A.16个 B.8个 C.4个 D.2个
10、 “2022年春节期间,中山市会下雨”这一事件为( )
A.必然事件 B.不可能事件 C.确定事件 D.随机事件
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在一个不透明袋子中,装有3个红球和一些白球,这些球除颜色外无其他差别,从袋中随机摸出一个球是红球的概率为,则袋中白球的个数是________.
2、某射击运动员在同一条件下的射击成绩记录如下(结果保留小数点后两位):
射击的次数 | 20 | 40 | 100 | 200 | 400 | 1000 |
“射中9环以上”的次数 | 15 | 33 | 78 | 158 | 321 | 801 |
“射中9环以上”的频率 | 0.76 | 0.83 | 0.78 | 0.79 | 0.80 | 0.80 |
根据试验所得数据,估计“射中9环以上”的概率是 _____.
3、在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为,那么袋中的球共有_______个.
4、真实惠举行抽奖活动,在一个封闭的盒子里有400张形状一模一样的纸片,其中有20张是一等奖,摸到二等奖的概率是10%,摸到三等奖的概率是20%,剩下是“谢谢惠顾”,则盒子中有“谢谢惠顾”______张.
5、从分别写有数字、、、、0、1、2、3、4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是___________.
三、解答题(5小题,每小题10分,共计50分)
1、某水果公司以9元/千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图.由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录
特级柑橘的售价(元/千克) | 14 | 15 | 16 | 17 | 18 |
特级柑橘的日销售量(千克) | 1000 | 950 | 900 | 850 | 800 |
(1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为_____千克;
(2)按此市场调节的观律,
①若特级柑橘的售价定为16.5元/千克,估计日销售量,并说明理由
②考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘(只售完好的柑橘),且售价保持不变求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由.
2、如图是甲、乙两个可以自由转动且质地均匀的转盘,甲转盘被分成三个大小相同的扇形,分别标有1,2,3;乙转盘被分成四个大小相同的扇形,分别标有1,2,3,4,指针的位置固定,转动转盘直至它自动停止(若指针正好指向扇形的边界,则重新旋转转盘,直至指针指向扇形内部).
(1)转动甲转盘,指针指向3的概率是 ;
(2)利用列表或画树状图的方法求转动两个转盘指针指向的两个数字和是5的概率.
3、如图,转盘黑色扇形和白色扇形的圆心角分别为120°和240°.
(1)让转盘自由转动一次,指针落在白色区域的概率是多少?
(2)让转盘自由转动两次,请用树状图或者列表法求出两次指针都落在白色区域的概率.(注:当指针恰好指在分界线上时,无效重转)
4、一个不透明的口袋中有四个分别标号为1,2,3,4的完全相同的小球,从中随机摸取两个小球.
(1)请列举出所有可能结果;
(2)求取出的两个小球标号和等于5的概率.
5、一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.
(1)求摸出一个球是白球的概率.
(2)第一次摸出1个球,记下颜色,放回摇匀,再摸出1个球,求两次摸出颜色相同的球的概率(用树状图或列表来表示分析过程).
-参考答案-
一、单选题
1、B
【分析】
设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率.
【详解】
解:设四张小图片分别用A,a,B,b表示,画树状图得:
由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,
∴摸取两张小图片恰好合成一张完整图片的概率为:,
故选:B.
【点睛】
题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键.
2、D
【分析】
必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是某次试验中可能发生也可能不发生的事件;面朝上可能结果为点数;根据要求判断,进而得出结论.
【详解】
解:①中面朝上的点数小于是一定不会发生的,故为不可能事件;
②中面朝上的点数大于是有可能发生有可能不发生的,故为随机事件;
③中面朝上的点数大于是一定会发生的,故为必然事件.
依据要求进行排序为③①②
故选D.
【点睛】
本题考察了事件.解题的关键在于区分各种事件的概念.
3、B
【分析】
根据必然事件的定义对选项逐个判断即可.
【详解】
解:A、抛一枚硬币正面朝上,是随机事件,不符合题意;
B、若a为实数,则a2≥0,是必然事件,符合题意;
C、某运动员射击一次击中靶心,是随机事件,不符合题意;
D、明天一定是晴天,是随机事件,不符合题意,
故选:B
【点睛】
本题主要考查了必然事件的定义,熟练掌握必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件是解题的关键.
4、D
【分析】
根据概率的意义分别判断后即可确定正确的选项.
【详解】
解:A. 必然事件发生的概率是1,故该选项正确,不符合题意;
B. 不可能事件发生的概率是0,故该选项正确,不符合题意;
C. 随机事件发生的可能性越大,它的概率就越接近1,故该选项正确,不符合题意;
D. 概率很小的事件也可能发生,故该选项不正确,符合题意;
故选D
【点睛】
本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.
5、D
【分析】
根据随机事件、必然事件以及不可能事件的定义即可作出判断.
【详解】
解:概率反映的是随机性的规律,但每次试验出现的结果具有不确定,故选项A、B错误;
随机事件发生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故选项C错误;
在相同条件下可以通过大量重复实验,用一个随机事件的频率去估计概率,故选项D正确;
故选:D.
【点睛】
本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
6、C
【详解】
解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;
B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;
C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;
D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;
故选:C
【点睛】
本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.
7、C
【分析】
先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可.
【详解】
解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;
则P(中心对称图形)=;
故选:C.
【点睛】
本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键.
8、D
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解;A、小明买彩票中奖是随机事件,不符合题意;
B、在一个只有红球的盒子里摸球,摸到了白球是不可能事件,不符合题意;
C、任意抛掷一只纸杯,杯口朝下是随机事件,不符合题意;
D、三角形两边之和大于第三边是必然事件,符合题意;
故选:D.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
9、C
【分析】
首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可.
【详解】
解:∵摸球800次红球出现了160次,
∴摸到红球的概率约为,
∴20个球中有白球20×=4个,
故选:C.
【点睛】
本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键.
10、D
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:“2022年年春节期间,中山市会下雨”这一事件为随机事件,
故选:D.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
二、填空题
1、6
【分析】
随机摸出一个球是红球的概率是,可以得到球的总个数,进而得出白球的个数.
【详解】
解:记摸出一个球是红球为事件
白球有个
故答案为:.
【点睛】
本题考察了概率的定义.解题的关键与难点在于理解概率的定义,求出球的总数.
2、0.8
【分析】
大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
【详解】
解:根据表格数据可知:
根据频率稳定在0.8,估计这名运动员射击一次时“射中9环以上”的概率是0.8.
故答案为:0.8.
【点睛】
本题考查了利用频率估计概率,解决本题的关键是理解当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
3、10
【分析】
设袋中共有x个球,再由袋中只装有4个红球,且摸出红球的概率为求出x的值即可.
【详解】
解:设袋中共有x个球,
∵袋中只装有4个红球,且摸出红球的概率为,
∴,
解得x=10.
经检验,x=10是分式方程的解,且符合题意,
故答案为:10.
【点睛】
本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
4、260
【分析】
先求出一等奖的概率,然后利用频数=总数×概率求解即可.
【详解】
解:由题意得:一等奖的概率=,
∴盒子中有“谢谢惠顾”张,
故答案为:260.
【点睛】
本题主要考查了利用概率求频数,解题的关键在于能够熟练掌握频数=总数×概率.
5、
【分析】
让绝对值小于2的数的个数除以数的总数即为所抽卡片上数字的绝对值小于2的概率.
【详解】
解:∵数的总个数有9个,绝对值小于2的数有−1,0,1共3个,
∴任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是=,
故答案为:.
【点睛】
本题考查概率的求法;得到绝对值小于2的数的个数是解决本题的易错点.
三、解答题
1、(1)9000千克;(2)①当售价定为16.5元/千克,日销售量为875千克,理由见解析;②最大利润售价为19元/千克,每日的最大利润为7500元,理由见解析
【分析】
(1)根据图形即可得出柑橘损坏的概率,再用整体1减去柑橘损坏的概率即可得出柑橘完好的概率,根据所得出柑橘完好的概率乘以这批柑橘的总质量即可.
(2)①根据表格求出销售量y与售价x的函数关系式,代入x=16.5计算即可;
②12天内售完9000千克完好的柑橘,求出日最大销售量即可求出售价的范围,再根据利润=(售价-进价)×销售量求出利润与售价的函数关系式即可;
【详解】
(1)由图可知损坏率在0.1上下波动,并趋于稳定
故所求为千克
(2)①设销售量y与售价x的函数关系式为
由题意可得函数图像过及两点
得
∴与的函数关系式为
把代入,
∴当售价定为16.5元/千克,日销售量为875千克
②依题意得:12天内售完9000千克柑橘
故日销售量至少为:(千克)
∴
解得
设利润为w元,则
∴对称轴为
∴当时w随x的增大而增大
∴当时销售利润最大,最大利润为(元)
【点睛】
此题考查了利用频率估计概率,以及二次函数销售利润问题.解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;并利用等量关系:利润=(售价-进价)×销售量求出利润与售价的函数关系式.
2、(1);(2).
【分析】
(1)利用概率公式求解指针指向3的概率即可;
(2)先列表得到所有的等可能的结果数与和为5的结果数,再利用概率公式求解即可.
【详解】
解:(1)甲转盘被分成三个大小相同的扇形,分别标有1,2,3;
所以转动甲转盘,指针指向3的概率是:
故答案为:;
(2)列表如下:
| 1 | 2 | 3 | 4 |
1 | 和2 | 和3 | 和4 | 和5 |
2 | 和3 | 和4 | 和5 | 和6 |
3 | 和4 | 和5 | 和6 | 和7 |
所有的等可能的结果数有12种,和为5的结果数有3种,
所以转动两个转盘指针指向的两个数字和是5的概率.
【点睛】
本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“列表法得到所有的等可能的结果数与符合条件的结果数”是解本题的关键.
3、(1);(2)见解析,
【分析】
(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,利用概率公式计算即可;
(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出概率可得.
【详解】
解:(1)将120°作为1份,可知白色扇面占2份,黑色扇面占1份,它们发生的可能性相同,让转盘自由转动一次,共三种可能,指针落在白色区域有2种,所以,概率是;
(2)设白色扇形两块和黑色扇形的一块分别为1,2,3,
画树状图得:
由树状图知共有9种等可能结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种结果,
所以指针一次落在白色区域,另一次落在黑色区域的概率为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
4、(1)见详解;(2).
【分析】
(1)根据题意通过列出相应的表格,即可得出所有可能结果;
(2)由题意利用取出的两个小球标号和等于5的结果数除以所有可能结果数即可得出答案.
【详解】
解:(1)由题意列表得:
| 1 | 2 | 3 | 4 |
1 | --- | (2,1) | (3,1) | (4,1) |
2 | (1,2) | --- | (3,2) | (4,2) |
3 | (1,3) | (2,3) | --- | (4,3) |
4 | (1,4) | (2,4) | (3,4) | --- |
所有可能的结果有12种;
(2)由(1)表格可知取出的两个小球标号和等于5的结果有(1,4)、(2,3)、(3,2)、(4,1)共4种,而所有可能的结果有12种,
所以取出的两个小球标号和等于5的概率.
【点睛】
本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
5、(1);(2)
【分析】
(1)根据概率公式列式计算即可得解;
(2)画出树状图或列出图表,然后根据概率公式列式计算即可得解.
【详解】
解(1)摸出一个球的所有可能结果总数,摸到是白球的可能结果数,
摸出一个球是白球的概率为.
(2)画树状图如下:
由树状图知,一共有9种情况,两次摸出颜色相同的球有5种,
所以两次摸出颜色相同的球的概率.
【点睛】
本题考查的是用列表法或树状图法求概率,解题的关键是掌握公式:概率所求情况数与总情况数之比
初中数学第26章 概率初步综合与测试课时作业: 这是一份初中数学第26章 概率初步综合与测试课时作业,共21页。试卷主要包含了下列说法正确的有,下列说法不正确的是等内容,欢迎下载使用。
沪科版九年级下册第26章 概率初步综合与测试达标测试: 这是一份沪科版九年级下册第26章 概率初步综合与测试达标测试,共19页。试卷主要包含了下列事件中,是必然事件的是,下列事件是必然事件的是等内容,欢迎下载使用。
沪科版九年级下册第26章 概率初步综合与测试达标测试: 这是一份沪科版九年级下册第26章 概率初步综合与测试达标测试,共18页。试卷主要包含了下列事件,你认为是必然事件的是,不透明的布袋内装有形状,在一个不透明的布袋中,红色等内容,欢迎下载使用。