数学九年级下册第26章 概率初步综合与测试一课一练
展开沪科版九年级数学下册第26章概率初步综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、任意掷一枚骰子,下列事件中:①面朝上的点数小于1;②面朝上的点数大于1;③面朝上的点数大于0,是必然事件,不可能事件,随机事件的顺序是( )
A.①②③ B.①③② C.③②① D.③①②
2、下列事件中,是必然事件的是( )
A.如果a2=b2,那么a=b
B.车辆随机到达一个路口,遇到红灯
C.2021年有366天
D.13个人中至少有两个人生肖相同
3、下列说法正确的是( )
A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨
B.“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上
C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖
D.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近
4、下列说法中正确的是( )
A.“打开电视,正在播放《新闻联播》”是必然事件
B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖
C.想了解某市城镇居民人均年收入水平,宜采用抽样调查
D.我区未来三天内肯定下雪
5、下列事件中,属于必然事件的是( )
A.任意购买一张电影票,座位号是奇数
B.抛一枚硬币,正面朝上
C.五个人分成四组,这四组中有一组必有2人
D.打开电视,正在播放动画片
6、下列判断正确的是( )
A.明天太阳从东方升起是随机事件;
B.购买一张彩票中奖是必然事件;
C.掷一枚骰子,向上一面的点数是6是不可能事件;
D.任意画一个三角形,其内角和是360°是不可能事件;
7、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为( ).
A. B. C. D.1
8、书架上有本小说、本散文,从中随机抽取本恰好是小说的概率是( )
A. B. C. D.
9、以下事件为随机事件的是( )
A.通常加热到100℃时,水沸腾
B.篮球队员在罚球线上投篮一次,未投中
C.任意画一个三角形,其内角和是360°
D.半径为2的圆的周长是
10、投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是( )
A.的值一定是
B.的值一定不是
C.m越大,的值越接近
D.随着m的增加,的值会在附近摆动,呈现出一定的稳定性
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在一个布袋中,装有除颜色外其它完全相同的2个红球和2个白球,如果从中随机摸出两个球,那么摸到的两个红球的概率是________.
2、投掷一枚质地均匀的正方体骰子,当骰子停止后,朝上一面的点数是“5”的概率是______.
3、四张背面相同的扑克牌,分别为红桃1,2,3,4,背面朝上,先从中抽取一张把抽到的点数记为a,再在剩余的扑克中抽取一张点数记为b,则以为坐标的点在直线上的概率为______.
4、某射击运动员在同一条件下的射击成绩记录如下:
射击次数 | 20 | 40 | 100 | 200 | 400 | 1000 |
“射中9环以上”的次数 | 15 | 33 | 78 | 158 | 321 | 801 |
“射中9环以下”的频率 |
|
|
|
|
|
|
通过计算频率,估计这名运动员射击一次时“射中9环以上”的概率是______(结果保留小数点后一位).
5、初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性______.(填“大”或“小”).
三、解答题(5小题,每小题10分,共计50分)
1、为了引导青少年学党史,某中学举行了“献礼建党百年”党史知识竞赛活动,将成绩划分为四个等级:A(优秀)、B(优良)、C(合格)、D(不合格).小李随机调查了部分同学的竞赛成绩,绘制成了如下统计图(部分信息未给出):
(1)小李共抽取了 名学生的成绩进行统计分析,扇形统计图中“优秀”等级对应的扇形圆心角度数为 ,请补全条形统计图;
(2)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数;
(3)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率.
2、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.
(1)王老师被分配到“就餐监督岗”的概率为 ;
(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.
3、九年级十班的甲、乙两位同学练习百米赛跑;操场上从内道到外道,标有1,2,3,4四个跑道.他们抽签占跑道.
(1)若甲抽到2道,则乙抽到3道的概率是______________;
(2)请列表或画树状图求甲、乙在相邻跑道的概率.
4、防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了甲、乙、丙三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.
(1)小明从乙测温通道通过的概率是________;
(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.
5、如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.
(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .
(2)若甲、乙均可在本层移动.
①黑色方块所构拼图是中心对称图形的概率是 .
②用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
-参考答案-
一、单选题
1、D
【分析】
必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是某次试验中可能发生也可能不发生的事件;面朝上可能结果为点数;根据要求判断,进而得出结论.
【详解】
解:①中面朝上的点数小于是一定不会发生的,故为不可能事件;
②中面朝上的点数大于是有可能发生有可能不发生的,故为随机事件;
③中面朝上的点数大于是一定会发生的,故为必然事件.
依据要求进行排序为③①②
故选D.
【点睛】
本题考察了事件.解题的关键在于区分各种事件的概念.
2、D
【分析】
在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.
【详解】
解:如果a2=b2,那么,原说法是随机事件,故A不符合题意;
车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;
2021年是平年,有365天,原说法是不可能事件,故C不符合题意;
13个人中至少有两个人生肖相同,是必然事件,故D符合题意,
故选:D.
【点睛】
本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.
3、D
【分析】
根据概率的意义去判断即可.
【详解】
∵“明天降雨的概率是80%”表示明天有降雨的可能性是80%,
∴A说法错误;
∵抛一枚硬币正面朝上的概率为”表示正面向上的可能性是,
∴B说法错误;
∵“彩票中奖的概率是1%”表示中奖的可能性是1%,
∴C说法错误;
∵“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近,
∴D说法正确;
故选D.
【点睛】
本题考查了概率的意义,正确理解概率的意义是解题的关键.
4、C
【分析】
根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.
【详解】
A. “打开电视,正在播放《新闻联播》”是随机事件,故该选项不正确,不符合题意;
B. 某次抽奖活动中奖的概率为,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;
C. 想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;
D. 我区未来三天内不一定下雪,故该选项不正确,不符合题意;
故选C
【点睛】
本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键.
5、C
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、任意购买一张电影票,座位号是奇数是随机事件;
B、抛一枚硬币,正面朝上是随机事件;
C、五个人分成四组,这四组中有一组必有2人是必然事件;
D、打开电视,正在播放动画片是随机事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
6、D
【详解】
解:A、明天太阳从东方升起是必然事件,故本选项错误,不符合题意;
B、购买一张彩票中奖是随机事件,故本选项错误,不符合题意;
C、掷一枚骰子,向上一面的点数是6是随机事件,故本选项错误,不符合题意;
D、任意画一个三角形,其内角和是360°是不可能事件,故本选项正确,符合题意;
故选:D
【点睛】
本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.
7、C
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,红球的数目为1.
【详解】
解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,
任意摸出1个,摸到红球的概率是:1÷3=.
故选:C.
【点睛】
本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
8、D
【分析】
概率=所求情况数与总情况数之比,再分析可得:总的情况数有5种,而随机抽取刚好是小说的情况数有3种,利用概率公式可得答案.
【详解】
解:书架上有本小说、本散文,共有本书,
从中随机抽取本恰好是小说的概率是;
故选:D.
【点睛】
本题考查的是简单随机事件的概率,掌握“概率公式求解简单随机事件的概率”是解本题的关键.
9、B
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A.通常加热到100℃时,水沸腾是必然事件;
B.篮球队员在罚球线上投篮一次,未投中是随机事件;
C.任意画一个三角形,其内角和是360°是不可能事件;
D.半径为2的圆的周长是是必然事件;
故选:B.
【点睛】
考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
10、D
【分析】
根据频率与概率的关系以及随机事件的定义判断即可
【详解】
投掷一枚质地均匀的硬币正面向上的概率是,而投掷一枚质地均匀的硬币正面向上是随机事件,是它的频率,随着m的增加,的值会在附近摆动,呈现出一定的稳定性;
故选:D
【点睛】
本题考查对随机事件的理解以及频率与概率的联系与区别.解题的关键是理解随机事件是都有可能发生的时间.
二、填空题
1、
【分析】
画树状图,共有12个等可能的结果,摸到的两个球颜色红色的结果有2个,再由概率公式求解即可.
【详解】
解:画树状图如图:
共有12个等可能的结果,摸到的两个红球的有2种结果,
摸到的两个红球的概率是,
故答案为:.
【点睛】
本题考查列表法或画树状图求概率,解题的关键是准确画出树状图或列出表格.
2、
【分析】
根据概率的计算公式计算.
【详解】
∵一枚质地均匀的正方体骰子有6种等可能性,
∴朝上一面的点数是“5”的概率是,
故答案为:.
【点睛】
本题考查了概率的计算,熟练掌握概率的计算公式是解题的关键.
3、
【分析】
首先画出树状图即可求得所有等可能的结果与点(a,b)在直线上的情况,然后利用概率公式求解即可求得答案.
【详解】
解:画树状图得:
由树形图可知:一共有12种等可能的结果,其中点(a,b)在直线上的有3种结果,
所以点(a,b)在直线上的概率为,
故答案为:.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
4、0.8
【分析】
重复试验次数越多,其频率越能估计概率,求出射击1000次时的频率即可.
【详解】
解:由题意可知射击1000次时,运动员射击一次时“射中9环以上”的频率为
∴用频率估计概率为0.801,保留小数点后一位可知概率值为0.8
故答案为:0.8.
【点睛】
本题考查了概率.解题的关键在于明确频率估计概率时要在重复试验次数尽可能多的情况下.
5、大
【分析】
分别求得找到男生和找到女生的概率即可比较出可能性的大小.
【详解】
解:∵初一(2)班共有学生44人,其中男生有30人,女生14人,
∴找到男生的概率为:=,
找到女生的概率为:=
而
∴找到男生的可能性大,
故答案为:大
【点睛】
本题考查的是简单随机事件的概率,掌握“利用概率公式求解简单随机事件的概率”是解本题的关键,随机事件的概率等于符合条件的情况数除以所有的情况数.
三、解答题
1、(1)100,126°,条形统计图见解析;(2)700;(3)
【分析】
(1)根据C等级的人数和所占比可求出抽取的总人数,用A等级的人数除以抽取的总人数乘以360°可得A等级对应扇形圆心角的度数,用抽取的总人数乘以B等级所占的百分比得B等级的人数,用抽取的总人数减去A、B、C等级的人数得出D等级人数,即可补全条形统计图;
(2)用2000乘以A等级所占的百分比即可估计出成绩“优秀”的学生人数;
(3)由(1)得不合格有5人,故由3男2女,用列表法即可求回访到一男一女的概率.
【详解】
(1)C等级的人数和所占比可得抽取的总人数为:(名),
∴“优秀”等级对应的扇形圆心角度数为:,
B等级的人数为:(名),
D等级的人数为:(名),
∴补全条形统计图如下所示:
(2)(名),
∴该校竞赛成绩“优秀”的学生人数为700名;
(3)∵抽取不及格的人数有5名,其中有2名女生,
∴有3名男生,
设3名男生分别为,,,2名女生分别为,,列表格如下所示:
| |||||
| |||||
| |||||
| |||||
| |||||
|
∴总的结果有20种,一男一女的有12种,
∴回访到一男一女的概率为.
【点睛】
本题考查统计与概率,其中涉及到条形统计图与扇形统计图相关联问题,用样本估计总体以及用列举法求概率,读懂条形统计图和扇形统计图所给出的条件是解题的关键.
2、(1);(2)李老师和王老师被分配到同一个监督岗的概率为.
【分析】
(1)直接利用概率公式计算;
(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算.
【详解】
解:(1)因为设立了四个“服务监督岗”: “洗手监督岗”,“戴口罩监督岗”,“戴口罩监督岗”,“就餐监督岗”而“操场活动监督岗”是其中之一,
∴王老师被分配到“就餐监督岗”的概率=;
故答案为:;
(2)画树状图为:
由树状图可知共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,
∴李老师和王老师被分配到同一个监督岗的概率==.
【点睛】
本题考查了列举法求解概率,列表法与树状图法求解概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
3、(1);(2)
【分析】
(1)因为甲已经抽到了2道,故乙只能在1、3、4三条跑道中抽取,乙抽到3道的概率P=.
(2)如图所示列表格,因为甲乙不能在同一条跑道,故共有12种可能,其中(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)为甲、乙跑道相邻的情况,故甲、乙在相邻跑道的概率为.
【详解】
(1)∵甲已经抽到2号跑道
∴乙只能在1、3、4三条跑道中抽取
∴乙抽到3道的概率P=
(2)如图所示列表格
可知(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)时甲、乙在相邻跑道
故甲、乙在相邻跑道的概率为.
【点睛】
本题考查了事件概率的计算以及列表法求概率,当事件中涉及两个因素,并且可能出现的结果数目较多时,用表格不重不漏地列出所有可能的结果,这种方法叫列表法.列表法的一般步骤:(1)把所有可能发生的试验结果一一列举出来,要求:①不重不漏;②所有可能结果有规律地填入表格(2)把所求事件发生的可能结果都找出来(3)代入计算公式:.
4、(1);(2)
【分析】
(1)根据题意直接利用概率公式求解即可得出答案;
(2)由题意先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式进行计算可得.
【详解】
解:(1)小明从乙测温通道通过的概率是,
故答案为:;
(2)列表格如下:
| 甲 | 乙 | 丙 |
甲 | 甲,甲 | 乙,甲 | 丙,甲 |
乙 | 甲,乙 | 乙,乙 | 丙,乙 |
C | 甲,丙 | 乙,丙 | 丙,C |
由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,
所以小明和小丽从同一个测温通道通过的概率为=.
【点睛】
本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
5、(1);(2)①;②.
【分析】
(1)直接由概率公式求解即可;
(2)①黑色方块所构拼图中是中心对称图形有两种情形,由概率公式求解即可;
②画树状图,再由概率公式求解即可.
【详解】
解:(1)若乙固定在E处,黑色方块甲,可在方格A、B、C中移动,且当在A、B处时,黑色方块构成的拼图是轴对称图形
所以移动甲后黑色方块构成的拼图是轴对称图形的概率是;
(2)①甲、乙在本层移动,一共有 种情况,其中黑色方块所构拼图中是中心对称图形有两种情形:a、甲在B处,乙在F处;b、甲在C处,乙在E处,
所以黑色方块所构拼图是中心对称图形的概率是;
②画树状图如图:
由树状图可知,共有9个等可能的结果,黑色方块所构拼图是轴对称图形的结果有5个,
∴黑色方块所构拼图是轴对称图形的概率=.
【点睛】
本题考查了列表法与树状图法、轴对称图形、中心对称图形等知识;熟练掌握轴对称图形、中心对称图形,正确画出树状图是解题的关键.
数学第26章 概率初步综合与测试课时训练: 这是一份数学第26章 概率初步综合与测试课时训练,共20页。试卷主要包含了以下事件为随机事件的是等内容,欢迎下载使用。
沪科版九年级下册第26章 概率初步综合与测试同步测试题: 这是一份沪科版九年级下册第26章 概率初步综合与测试同步测试题,共20页。试卷主要包含了下列事件中是不可能事件的是,下列事件中,属于必然事件的是,下列事件中,是必然事件的是,下列说法中正确的是等内容,欢迎下载使用。
2021学年第26章 概率初步综合与测试一课一练: 这是一份2021学年第26章 概率初步综合与测试一课一练,共19页。试卷主要包含了下列说法正确的是,下列说法中,正确的是,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。