沪科版第26章 概率初步综合与测试当堂检测题
展开
这是一份沪科版第26章 概率初步综合与测试当堂检测题,共17页。试卷主要包含了下列说法错误的是,如图,有5张形状,任意掷一枚骰子,下列事件中等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是( )A.15 B.12 C.9 D.42、下列说法不正确的是( )A.不可能事件发生的概率是0B.概率很小的事件不可能发生C.必然事件发生的概率是1D.随机事件发生的概率介于0和1之间3、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是( )A. B. C. D.4、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是( )A. B. C. D.5、下列说法错误的是( )A.必然事件发生的概率是1 B.不可能事件发生的概率为0C.随机事件发生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能发生6、中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“●”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是( )A. B. C. D.7、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同.现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是( ).A. B. C. D.8、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是( )A. B. C. D.9、任意掷一枚骰子,下列事件中:①面朝上的点数小于1;②面朝上的点数大于1;③面朝上的点数大于0,是必然事件,不可能事件,随机事件的顺序是( )A.①②③ B.①③② C.③②① D.③①②10、下列说法中正确的是( )A.一组数据2、3、3、5、5、6,这组数据的众数是3B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1C.为了解长沙市区全年水质情况,适合采用全面调查D.画出一个三角形,其内角和是180°为必然事件第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从﹣2,﹣1,1,3,5五个数中随机选取一个数作为二次函数y=ax2+x﹣3中a的值,则二次函数图象开口向上的概率是 _____.2、从分别写有2,4,5,6的四张卡片中任取一张,卡片上的数是偶数的概率为_____.3、不透明袋子中装有1个红球和2个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是 _________ .4、有两个正方体的积木块,如图所示.下面是小怡投掷某块积木200次的情况统计表:灰色的面朝上白色的面朝上32次168次根据表中的数据推测,小怡最有可能投掷的是______号积木.5、如图,在3×3正方形网格中,A、B在格点上,在网格的其它格点上任取一点C,能使△ABC为等腰三角形的概率是_____.三、解答题(5小题,每小题10分,共计50分)1、在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,上面的数字不小于2的概率为 .(2)从中随机摸出一球不放回,再随机摸出一球,请用列表或画树状图的方法,求两次摸出小球上的数字和恰好是奇数的概率.2、小宇和小伟玩“石头、剪刀、布”的游戏.这个游戏的规则是:“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,手势相同不分胜负.如果二人同时随机出手(分别出三种手势中的一种手势)一次,那么小宇获胜的概率是多少?3、如图,某校开设了A、B、C三个测温通道.某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是 ;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.4、从长为2cm,3cm,4cm,5cm的4条线段中随机取出3条线段,问随机取出的3条线段能围成一个三角形的概率是多少?5、九年级十班的甲、乙两位同学练习百米赛跑;操场上从内道到外道,标有1,2,3,4四个跑道.他们抽签占跑道.(1)若甲抽到2道,则乙抽到3道的概率是______________;(2)请列表或画树状图求甲、乙在相邻跑道的概率. -参考答案-一、单选题1、A【分析】由于摸到红球的频率稳定在20%,由此可以确定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n.【详解】∵摸到红球的频率稳定在20%,∴摸到红球的概率为20%,而a个小球中红球只有3个,∴摸到红球的频率为.解得.故选A.【点睛】此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.2、B【分析】根据概率的意义分别判断后即可确定正确的选项.【详解】解:A. 不可能事件发生的概率是0,故该选项正确,不符合题意;B. 概率很小的事件也可能发生,故该选项不正确,符合题意;C. 必然事件发生的概率是1,故该选项正确,不符合题意;D. 随机事件发生的概率介于0和1之间,故该选项正确,符不合题意;故选B【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.3、B【分析】由题意,只要求出阴影部分与矩形的面积比即可.【详解】解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,由几何概型公式得到最终停在阴影方砖上的概率为:;故选:B.【点睛】本题将概率的求解设置于黑白方砖中,考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.4、C【分析】根据骰子各面上的数字得到向上一面的点数可能是3或4,利用概率公式计算即可.【详解】解:一枚质地均匀的骰子共有六个面,点数分别为1,2,3,4,5,6,∴点数大于2且小于5的有3或4,∴向上一面的点数大于2且小于5的概率是=,故选:C.【点睛】此题考查了求简单事件的概率,正确掌握概率的计算公式是解题的关键.5、D【分析】根据概率的意义分别判断后即可确定正确的选项.【详解】解:A. 必然事件发生的概率是1,故该选项正确,不符合题意;B. 不可能事件发生的概率是0,故该选项正确,不符合题意;C. 随机事件发生的可能性越大,它的概率就越接近1,故该选项正确,不符合题意;D. 概率很小的事件也可能发生,故该选项不正确,符合题意;故选D【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.6、C【分析】用“---”(图中虚线)的上方的黑点个数除以所有黑点的个数即可求得答案.【详解】解:观察“馬”移动一次能够到达的所有位置,即用“●”标记的有8处,位于“---”(图中虚线)的上方的有2处,所以“馬”随机移动一次,到达的位置在“---”上方的概率是,故选:C.【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案.【详解】解:∵有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.8、A【分析】根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可【详解】解:∵总可能结果有4种,摸到标号大于2的结果有2种,∴从袋子中任意摸出1个球,摸到标号大于2的概率是故选A【点睛】本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.9、D【分析】必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是某次试验中可能发生也可能不发生的事件;面朝上可能结果为点数;根据要求判断,进而得出结论.【详解】解:①中面朝上的点数小于是一定不会发生的,故为不可能事件;②中面朝上的点数大于是有可能发生有可能不发生的,故为随机事件;③中面朝上的点数大于是一定会发生的,故为必然事件.依据要求进行排序为③①②故选D.【点睛】本题考察了事件.解题的关键在于区分各种事件的概念.10、D【分析】根据统计调查、事件的发生可能性与概率的求解方法即可依次判断.【详解】A. 一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;D. 画出一个三角形,其内角和是180°为必然事件,正确;故选D.【点睛】此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解.二、填空题1、【分析】二次函数图象开口向上得出a>0,从所列5个数中找到a>0的个数,再根据概率公式求解可得.【详解】解:∵从﹣2,﹣1,1,3,5五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1,3,5这3种结果,∴该二次函数图象开口向上的概率为,故答案为:.【点睛】本题主要考查概率公式及二次函数的性质,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.2、【分析】根据概率的求法,让是偶数的卡片数除以总卡片数即为所求的概率.【详解】解答:解:∵四张卡片上分别标有数字2,4,5,6,其中有2,4,6,共3张是偶数,∴从中随机抽取一张,卡片上的数字是偶数的概率为,故答案为:.【点睛】点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、【分析】先确定事件的所有等可能性,再确定被求事件的等可能性,根据概率计算公式计算即可.【详解】∵事件的所有等可能性有1+2=3种,摸出红球事件的等可能性有1种,∴摸出红球的概率是,故答案为:.【点睛】本题考查了简单概率的计算,熟练掌握概率计算公式是解题的关键.4、②【分析】计算出①号积木、②号积木朝上的面为白色、为灰色的概率,再求出小怡掷200次积木的实验频率,进行判断即可.【详解】①号积木由于三面灰色,三面白色,因此随机掷1次,朝上的面是白色、灰色的可能性都是,②号积木由于一面灰色,五面白色,因此随机掷1次,朝上的面是灰色的可能性都是,是白色的可能性为,由表格中的数据可得,小怡掷200次积木得到朝上的面为灰色的频率为,白色的频率为,故选择的是②号积木,理由:小怡掷200次积木的实验频率接近于②号积木相应的概率.故答案为②【点睛】本题主要考查频率与概率的关系,解题的关键是正确理解实验频率与概率的关系.5、【分析】分三种情况:①点A为顶点;②点B为顶点;③点C为顶点;得到能使△ABC为等腰三角形的点C的个数,再根据概率公式计算即可求解.【详解】如图,∵AB=,∴①若AB=AC,符合要求的有3个点;②若AB=BC,符合要求的有2个点;③若AC=BC,不存在这样格点.∴这样的C点有5个.∴能使△ABC为等腰三角形的概率是.故答案为:.【点睛】此题考查等腰三角形的判定和概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三、解答题1、(1);(2)【分析】(1)列表确定出所有等可能的情况数,找出小球上写的数字不小于2的情况数,即可求出所求概率;(2)列表确定出所有等可能的情况数,找出两次摸出小球上的数字和恰好是奇数的情况数,即可求出所求概率.【详解】解:(1)从中随机摸出一个小球,小球上写的数字所有等可能情况有:1,2,3,4,共4种,其中数字不小于2的情况有:2,3,4,共3种,则P(小球上写的数字不小于2)=;故答案为:;(2)根据题意列表得: 12341﹣﹣﹣(1,2)(1,3)(1,4)2(2,1)﹣﹣﹣(2,3)(2,4)3(3,1)(3,2)﹣﹣﹣(3,4)4(4,1)(4,2)(4,3)﹣﹣﹣所有等可能的数有12种,两次摸出小球上的数字和恰好是奇数的情况有8种,则P(两次摸出小球上的数字和恰好是奇数)==.故答案为:【点睛】本题考查了概率公式,学会利用列表法与树状图法求随机事件的概率是解本题的关键.2、小宇获胜的概率是,见解析.【分析】根据题意画树状图表示出所有等可能的情况,继而解题.【详解】解:画树状图如下,所有机会均等的情况共9种,小宇获胜的概率为:,答:小宇获胜的概率是.【点睛】本题考查用列表法或画树状图表示概率,是基础考点,掌握相关知识是解题关键.3、(1);(2)小明和小丽从同一个测温通道通过的概率为.【分析】(1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:(1)小明从A测温通道通过的概率是,故答案为:;(2)根据题意列表如下: ABCAAABACABABBBCBCACBCCC由表可知,共有9种等可能结果,其中小明和小丽从同一个测温通道通过的有3种结果,则小明和小丽从同一个测温通道通过的概率为=.【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.4、【分析】先利用列举法求出所有4种可能的结果数,再分别根据三角形三边的关系找出符合条件的结果数,最后根据概率公式计算即可.【详解】解:有4种可能的结果数,它们是:2cm、4cm、5cm;2cm、3cm、5cm;3cm、4cm、5cm;2cm、3cm、4cm,这三条线段能构成一个三角形的结果数为3,所以这三条线段能构成一个三角形的概率=.【点睛】本题主要考查了三角形的三边关系以及概率公式,根据已知确定可能的结果数和符合条件的结果数是解答本题的关键.5、(1);(2)【分析】(1)因为甲已经抽到了2道,故乙只能在1、3、4三条跑道中抽取,乙抽到3道的概率P=.(2)如图所示列表格,因为甲乙不能在同一条跑道,故共有12种可能,其中(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)为甲、乙跑道相邻的情况,故甲、乙在相邻跑道的概率为.【详解】(1)∵甲已经抽到2号跑道∴乙只能在1、3、4三条跑道中抽取∴乙抽到3道的概率P=(2)如图所示列表格可知(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)时甲、乙在相邻跑道故甲、乙在相邻跑道的概率为.【点睛】本题考查了事件概率的计算以及列表法求概率,当事件中涉及两个因素,并且可能出现的结果数目较多时,用表格不重不漏地列出所有可能的结果,这种方法叫列表法.列表法的一般步骤:(1)把所有可能发生的试验结果一一列举出来,要求:①不重不漏;②所有可能结果有规律地填入表格(2)把所求事件发生的可能结果都找出来(3)代入计算公式:.
相关试卷
这是一份沪科版九年级下册第26章 概率初步综合与测试练习,共21页。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试复习练习题,共19页。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时练习,共18页。试卷主要包含了不透明的布袋内装有形状,一个不透明的口袋里有红等内容,欢迎下载使用。