【高频真题解析】中考数学模拟专项测评 A卷(含答案及解析)
展开中考数学模拟专项测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、无论a取什么值时,下列分式总有意义的是( )
A. B. C. D.
2、如图所示,AB,CD相交于点M,ME平分,且,则的度数为( )
A. B. C. D.
3、一元二次方程的一次项的系数是( )
A.4 B.-4 C.1 D.5
4、某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个.设甲种陀螺单价为x元,根据题意列方程为( )
A. B.
C. D.
5、在,,,中,最大的是( )
A. B. C. D.
6、以下四个选项表示某天四个城市的平均气温,其中平均气温最高的是( )
A. B. C. D.
7、计算3.14-(-π)的结果为( ) .
A.6.28 B.2π C.3.14-π D.3.14+π
8、若是最小的自然数, 是最小的正整数,是绝对值最小的有理数,则的值为( ) .
A.-1 B.1 C.0 D.2
9、已知∠A与∠B的和是90°,∠C与∠B互为补角,则∠C比∠A大( )
A.180° B.135° C.90° D.45°
10、下列等式成立的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为 cm的圆形纸片所覆盖.
2、如图,半圆O的直径AE=4,点B,C,D均在半圆上.若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为________.
3、(1)定义“*”是一种运算符号,规定,则=________.
(2)宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,则买地毯至少需要___________________ 元.
4、已知,那么它的余角是________,它的补角是________.
5、的最简公分母是_______________.
三、解答题(5小题,每小题10分,共计50分)
1、在直角坐标系中,⊙A的半径是2,圆心A的坐标为(1,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,直线BC与⊙A交于点C,与x轴交于点B(﹣3,0).
(1)求证:BC是⊙A的切线;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰好为点 E、F,求抛物线的解析式;
(3)在(2)的条件下,点M是抛物线对称轴上的一个动点,当△ECM的周长最小时,请直接写出点M的坐标.
2、解方程:
(1);
(2)
3、已知,点,是数轴上不重合的两个点,且点在点的左边,点是线段的中点.点A,B,M分别表示数a,b,x.请回答下列问题.
(1)若a=-1,b=3,则点A,B之间的距离为 ;
(2)如图,点A,B之间的距离用含,的代数式表示为x= ,利用数轴思考x的值,x= (用含,的代数式表示,结果需合并同类项);
(3)点C,D分别表示数c,d.点C,D的中点也为点M,找到之间的数量关系,并用这种关系解决问题(提示:思考x的不同表示方法,找相等关系).
①若a=-2,b=6,c=则d= ;
②若存在有理数t,满足b=2t+1,d=3t-1,且a=3,c=-2,则t= ;
③若A,B,C,D四点表示的数分别为-8,10,-1,3.点A以每秒4个单位长度的速度向右运动,点B以每秒3个单位长度的速度向左运动,点C以每秒2个单位长度的速度向右运动,点D以每秒3个单位长度的速度向左运动,若t秒后以这四个点为端点的两条线段中点相同,则t= .
4、(1)计算:;
(2)解方程:.
5、在二次函数y=ax2+bx+c中,x与y的部分对应值如表:
X | …… | ﹣2 | 0 | 2 | 3 | …… |
Y | …… | 8 | 0 | 0 | 3 | …… |
下列说法:①该二次函数的图像经过原点;②该二次函数的图像开口向下;③该二次函数的图像经过点(﹣1,3);④当x>0时,y随x的增大而增大;⑤方程ax2+bx+c=0有两个不相等的实数根,其中正确的有( )
A.①②③ B.①③⑤ C.①③④ D.②④⑤
-参考答案-
一、单选题
1、D
【分析】
根据分式有意义的条件是分母不等于零进行分析即可.
【详解】
解:A、当a=0时,分式无意义,故此选项错误;
B、当a=−1时,分式无意义,故此选项错误;
C、当a=−1时,分式无意义,故此选项错误;
D、无论a为何值,分式都有意义,故此选项正确;
故选D.
【点睛】
此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
2、C
【分析】
先求出,再根据角平分线的性质得到,由此即可求解.
【详解】
解:∵,,
∴,
∵ME平分,
∴,
∴
故选C.
【点睛】
本题主要考查了角平分线的性质,解题的关键在于能够熟练掌握相关知识进行求解.
3、A
【分析】
方程整理为一般形式,求出一次项系数即可.
【详解】
方程整理得:x2+4x+5=0,则一次项系数为4.
故选A.
【点睛】
本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
4、C
【分析】
首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据关键语句“单独买甲种比单独买乙种可多买40个”可得方程.
【详解】
首先设甲种陀螺单价为x元,则乙种陀螺单价为元,
根据题意可得:,
故选:C.
【点睛】
本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程.
5、B
【分析】
根据绝对值及乘方进行计算比较即可.
【详解】
,,,,
,,,中,最大的是.
故选:B.
【点睛】
本题考查了有理数的乘方和绝对值,熟练掌握运算法则是解题的关键.
6、D
【分析】
根据负数比较大小的概念逐一比较即可.
【详解】
解析:.
故选:
【点睛】
本题主要考查了正负数的意义,熟悉掌握负数的大小比较是解题的关键.
7、D
【分析】
根据减去一个数等于加上这个数的相反数进行计算即可得解.
【详解】
解: 3.14-(-π)= 3.14+π.
故选:D.
【点睛】
本题考查减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键.
8、C
【分析】
由a是最小的自然数,b是最小的正整数,c是绝对值最小的数可分别求出a、b、c的值,可求出a-bc的值.
【详解】
解:因为a是最小的自然数,b是最小的正整数,c是绝对值最小的有理数,
所以a=0,b=1,c=0,
所以a-bc=0-1×0=0,
故选:C.
【点睛】
本题考查有理数的有关概念,注意:最小的自然数是0;最小的正整数是1,绝对值最小的有理数是0.
9、C
【分析】
根据补角的定义进行分析即可.
【详解】
解:∵∠A+∠B=90°,∠B+∠C=180°,
∴∠C﹣∠A=90°,
即∠C比∠A大90°,
故选C.
【点睛】
考核知识点:补角.理解补角的数量关系是关键.
10、D
【分析】
根据分式的基本性质进行判断.
【详解】
解:A、分子、分母同时除以-1,则原式=,故本选项错误;
B、分子、分母同时乘以-1,则原式=,故本选项错误;
C、分子、分母同时除以a,则原式= ,故本选项错误;
D、分子、分母同时乘以b,则原式=,故本选项正确.
故选D.
【点睛】
本题考查了分式的基本性质.特别要注意:分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.
二、填空题
1、.
【分析】
作圆的直径,连接,根据圆周角定理求出,根据锐角三角函数的定义得出,代入求出即可.
【详解】
解:作圆O的直径CD,连接BD,
∵圆周角∠A、∠D所对弧都是,
∴∠D=∠A=60°.
∵CD是直径,∴∠DBC=90°.
∴sin∠D=.
又∵BC=3cm,∴sin60°=,解得:CD=.
∴的半径是(cm).
∴△ABC能被半径至少为cm的圆形纸片所覆盖.
【点睛】
本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是利用外接圆直径构造直角三角形求半径.
2、π
【分析】
根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.
【详解】
如图,连接CO,
∵AB=BC,CD=DE,
∴∠BOC+∠COD=∠AOB+∠DOE=90°,
∵AE=4,
∴AO=2,
∴S阴影==π.
【点睛】
本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.
3、2019; 800.
【分析】
(1)利用已知的新定义计算即可得到结果;
(2)根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.
【详解】
解:(1)∵
∴=2-(-2)+2015=2019;
(2)如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米,
∴地毯的长度为6+4=10米,地毯的面积为10×2=20平方米,
∴买地毯至少需要20×40=800元.
故答案为:(1)2019;(2)800.
【点睛】
(1)本题考查有理数的混合运算,熟练掌握运算法则是解本题的关键.
(2)本题考查平移的性质,,解题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.
4、
【分析】
根据余角、补角的性质即可求解.
【详解】
解:,
故答案为,.
【点睛】
此题考查了补角和余角的性质,理解余角和补角的性质是解题的关键.
5、
【分析】
确定最简公分母的方法是:
(1)取各分母系数的最小公倍数;
(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;
(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.
【详解】
解:的分母分别是xy、4x3、6xyz,故最简公分母是.
故答案为.
【点睛】
本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.
三、解答题
1、
(1)见解析
(2)
(3)
【分析】
(1)连接,由AB2=BC2+AC2,即可求解;
(2)求出抛物线顶点坐标为(1,),将点E的坐标代入抛物线表达式,即可求解;
(3)由题意知,EC的长度不变,点M在抛物线的对称轴上,连接CF交对称轴于点M,此时△ECM的周长最短,进而求解.
(1)
证明:连接,
∵的半径为2,则,
由点A、B的坐标知,,则,
在中,由勾股定理得:,
在中,,
则,
∴,
∴半径
∴为的切线;
(2)
设BC的解析式为,把点B(-3,0)、C(0,)的坐标代入得,
,解得,,
∴直线的解析式为;
由题意得,与x轴的交点分别为、,
则抛物线的对称轴为过点A的直线.
∵抛物线的顶点在直线上,
当时,,
∴抛物线顶点坐标为.
设抛物线解析式为,
∵抛物线过点,
∴,
解得.
∴抛物线的解析式为;
(3)
由题意知,的长度不变,点M在抛物线的对称轴上,,当C、M、F在同一条直线上时,最小;
连接交对称轴于点M,此时的周长最短,
设直线的表达式为,则,
解得,
∴直线的表达式为,
当时,,
故点M的坐标为.
【点睛】
本题是二次函数综合题,主要考查了一次函数的性质、圆切线的知识、点的对称性等,解题关键是熟练运切线的判定和二次函数的性质进行推理计算.
2、
(1)
(2)
【分析】
(1)先移项,再合并同类项,最后把未知数的系数化“1”即可;
(2)先去分母,再去括号,再移项,合并同类项,再把未知数的系数化“1”即可;
(1)
解:
移项合并同类项得:
解得:
(2)
解:
去分母得:
去括号得:
整理得:
解得:
【点睛】
本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤”是解本题的关键.
3、
(1)4
(2),
(3)①;②;③0或或7
【分析】
(1)由图易得A、B之间的距离;
(2)A、B之间的距离为两点表示的数差的绝对值;由数轴得点M表示的数x为,从而可求得x;
(3)①由(2)得:,其中a、b、c的值已知,则可求得d的值;
②由可得关于t的方程,解方程即可求得t;
③分三种情况考虑:若线段与线段共中点;若线段与线段共中点;若线段与线段共中点;利用(2)的结论即可解决.
(1)
AB=3+1=4
故答案为:4
(2)
;
由数轴知:
故答案为:,
(3)
①由(2)可得:
即
解得:
故答案为:
②由,得
解得:
故答案为:7
③由题意运动t秒后.
分三种情况:
若线段与线段共中点,则,解得;
若线段与线段共中点,则,解得;
若线段与线段共中点,则,解得.
综上所述,
故答案为:0或或7
【点睛】
本题考查了数轴上两点间的距离,数轴上线段中点表示的数,解一元一次方程等知识,灵活运用这些知识是关键,注意数形结合.
4、(1)-4;(2)
【分析】
(1)原式先算乘方及绝对值,再算乘除,最后算减法即可得到结果;
(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.
【详解】
解:(1)原式=16÷(-8)-(30×-30×)
=-2-(12-10)
=-2-2
=-4;
(2)去分母得:3(3-x)=2(x+4),
去括号得:9-3x=2x+8,
移项得:-3x-2x=8-9,
合并得:-5x=-1,
解得:x=.
【点睛】
此题考查了解一元一次方程,以及有理数的混合运算,解方程的步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.
5、B
【分析】
根据表格可知当时,,即可判断①,根据二次函数图象的对称性可知对称轴为,在对称轴左边随的增大而减小,在对称轴的右边随的增大而增大,即可判断②④,根据对称性可知和时的函数值相等,即可判断③,该函数存在两个函数值为0的点,则即可判断⑤.
【详解】
解:∵当时,,
∴该二次函数的图像经过原点,故①正确;
对称轴为,
方程ax2+bx+c=0有两个不相等的实数根,故⑤正确;
和时的函数值相等
即该二次函数的图像经过点(﹣1,3),故③正确
在对称轴左边即,随的增大而减小,在对称轴的右边即,随的增大而增大,
故②④不正确
故正确的是①③⑤
故选B
【点睛】
本题考查了二次函数图象的性质,掌握二次函数的性质是解题的关键.
【高频真题解析】最新中考数学模拟专项测评 A卷(含答案及详解): 这是一份【高频真题解析】最新中考数学模拟专项测评 A卷(含答案及详解),共21页。试卷主要包含了已知,,,则,若a<0,则= .,方程的解为等内容,欢迎下载使用。
【高频真题解析】2022年河北秦皇岛市中考数学模拟专项测评 A卷(含答案及解析): 这是一份【高频真题解析】2022年河北秦皇岛市中考数学模拟专项测评 A卷(含答案及解析),共25页。试卷主要包含了下列运算中,正确的是,在,,,中,最大的是等内容,欢迎下载使用。
【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选): 这是一份【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选),共21页。试卷主要包含了下列各式,下列说法正确的是.,不等式+1<的负整数解有,计算12a2b4•÷的结果等于,分式方程有增根,则m为等内容,欢迎下载使用。