数学九年级下册第25章 投影与视图综合与测试同步达标检测题
展开
这是一份数学九年级下册第25章 投影与视图综合与测试同步达标检测题,共22页。试卷主要包含了如图所示几何体的左视图是,如图所示的几何体,它的左视图是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( )A.15个 B.13个 C.11个 D.5个2、棱长为a的小正方体按照如图所示的规律摆放,从上面看第100个图,得到的平面图形的面积为( )A.100a B. C. D.3、下面的三视图所对应的几何体是( )A. B. C. D.4、水平放置的下列几何体,主视图不是矩形的是( )A. B.C. D.5、如图是由6个同样大小的正方体摆成,将标有“1”的这个正方体去掉,所得几何体( )A.俯视图不变,左视图不变 B.主视图改变,左视图改变C.俯视图改变,主视图改变 D.主视图不变,左视图改变6、如图所示几何体的左视图是( )A. B.C. D.7、如图是一个几何体的实物图,则其主视图是( )A. B. C. D.8、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为( )m.A.2 B.4 C.6 D.89、如图所示的几何体,它的左视图是( )A. B. C. D.10、如图,该几何体的左视图是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为_____.2、三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为________cm.3、如图,AB和DE是直立在地面上的两根立柱,AB=6(m),AB在阳光下的影长BC=3(m),在同一时刻阳光下DE的影长EF=4(m),则DE的长为________米.4、一个几何体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个几何体的小正方体的个数为______个.5、三视图中的三个视图完全相同的几何体可能是________(列举出两种即可).三、解答题(5小题,每小题10分,共计50分)1、用小正方体搭成一个几何体,使得从正面看、从上面看该几何体得到的图形如图所示.问: (1)这样的几何体只有一种吗?它最多需要多少个小正方体?(2)它最少需要多少个小正方体?请分别画出这两种情况下从左面看该几何体得到的图形.2、如图所示是一个用小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出它的主视图与左视图.3、由5个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.4、请从正面、左面、上面观察, 画出该几何体的三视图5、如图,是由一些大小相同且棱长为1的小正方形组合成的简单几何体.(1)这几个简单几何体的表面积(包含底面部分)是___________;(2)该几何体的立体图形如图所示,请在如图方格纸中分别画出它的从左面看和从上面看到的图形(请用铅笔涂上阴影) -参考答案-一、单选题1、A【分析】根据主视图和左视图,分别找出每行每列立方体最多的个数,相加即可判断出答案.【详解】综合主视图与左视图,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个,所以最多有(个),不可能有15个.故选:A.【点睛】本题考查三视图,根据题目给出的视图,出每行每列的立方体个数是解题的关键.2、B【分析】先探究第100个图形俯视图所看到的小正方形的个数,再结合每个小正方形的面积为 从而可得答案.【详解】解:(1)∵第1个图有1层,共1个小正方体, 第2个图有2层,第2层正方体的个数为1+2=3, 第3个图有3层,第3层正方体的个数为1+2+3=6, 第n层时,正方体的个数为1+2+3+…+n=n(n+1), 当n=100时,第100层的正方体的个数为×100×101=5050,从上面看第100个图,看到了5050个小正方形,所以面积为: 故选B【点睛】本题考查的是三视图,俯视图的面积,掌握“正方体堆砌图形的俯视图”是解本题的关键.3、C【分析】根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案.【详解】解:根据三视图知,组成该几何体的小正方体分布情况如下:与之相对应的C选项,故选:C.【点睛】本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状.4、C【分析】根据从正面看到的图形是主视图,观察图形的主视图是否为矩形,即可判断【详解】解:观察各图形,其中A,B,D的主视图是矩形,C选项的主视图是三角形故C选项符合题题意,故选C【点睛】本题考查了三视图,掌握从正面看到的图形是主视图是解题的关键.5、A【分析】根据几何体的三视图判断即可;【详解】根据已知图形,去掉标有“1”的这个正方体,主视图改变,俯视图和左视图不变;故选A.【点睛】本题主要考查了几何体三视图的应用,准确分析判断是解题的关键.6、D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都变现在左视图中.【详解】解:从左视图看,易得到一个矩形,矩形中有一条横行的虚线,故选:D【点睛】本题考查简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.7、C【分析】找到从正面看所得到的图形即可.【详解】解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图.故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8、B【分析】根据题意,画出示意图,易得:△EDC∽△FDC,进而可得,即DC2=ED•FD,代入数据可得答案.【详解】解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=2m,FD=8m;∵∠E+∠F=90°,∠E+∠ECD=90°,∴∠ECD=∠F,∴△EDC∽△FDC,∴,即DC2=ED•FD=2×8=16,解得CD=4m.故选:B.【点睛】本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键.9、C【分析】根据几何体的左面是一个圆环即可得左视图.【详解】由于几何体的左面是一个圆环,故其左视图也是一个圆环,且小圆是实线.故选:C.【点睛】本题考查了三视图,根据所给几何体正确画出三视图是关键.10、C【分析】根据从左边看得到的图形是左视图解答即可.【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确.故选C.【点睛】本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键.二、填空题1、故答案为: 【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.【分析】根据主视图是边长为10cm 的正方形,可知圆柱的高为10cm,底面的直径为10cm,据此即可求出侧面积.【详解】解:∵果罐的主视图是边长为10cm的正方形,为圆柱体,∴圆柱体的底面直径和高为10cm,∴侧面积为,故答案为:.【点睛】本题主要考查的是立体图形中的展开图,并进行面积计算,掌握立体图形的展开形式是解题的关键.2、.【分析】过点E作EQ⊥FG于点Q,根据三视图可知AB的长即为EQ的长,根据勾股定理求解即可.【详解】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB.∵∠EFG=45°,∴EQ=FQ,∵EF=8cm,∴,∴EQ=FQ=(cm),即AB的长 cm.故答案为:4.【点睛】本题考查了三棱柱的三视图,得到AB的长即为EQ的长是解题的关键.3、8【分析】连接,,根据平行投影的性质得,根据平行的性质可知,利用相似三角形对应边成比例即可求出的长.【详解】解:如图,连接AC ,DF,根据平行投影的性质得DF∥AC,,,,,,.故答案为:8.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定定理以及性质是解题的关键.4、5【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.【详解】解:由俯视图易得最底层小正方体的个数为3,由主视图可知第二层的右侧有2个正方体,从左视图可知只有一行二层,那么共有3+2=5个正方体.故答案为:5.【点睛】本题考查了由三视图确定几何体的形状,同时考查学生空间想象能力及对立体图形的认识.5、正方体,球体【分析】几何体的三视图包括主视图、左视图、俯视图,根据定义选取三视图完全相同的几何体即可.【详解】解:正方体的主视图、左视图、俯视图都是正方形,且每个正方形大小相同;球体的主视图、左视图、俯视图,都是圆,且每个圆的大小相同.故答案为:正方体,球体【点睛】本题考查几何体的三视图,牢记主视图、左视图、俯视图的定义是做题的重点.三、解答题1、(1)不止一种,最多14个;(2)最小10个,画图见解析【分析】(1)由第2层的正方体的个数不同,可得这样的几何体不止一种,再在俯视图的基础上确定每层正方体的数量最多时的正方体的数量,从而可得答案;(2)在俯视图的基础上确定每层正方体的数量最小时的正方体的数量,从而可得答案.【详解】解: (1)这样的几何体不止一种,正方体最多时的俯视图为:其中正方形中的数字表示正方体的数量,所以最多需要6+6+2=14个; (2)最少需要4+4+2=10个,正方体个数最多时的左视图为:正方体个数最小时俯视图为:此时左视图为:或正方体个数最小时俯视图为:此时左视图为:或正方体个数最小时俯视图为:此时的左视图为:或正方体个数最小时俯视图为:此时的左视图为:或正方体个数最小时俯视图为:此时的左视图为:或正方体个数最小时俯视图为:此时的左视图为:【点睛】本题考查的是三视图,掌握三视图的定义,清晰的分类讨论是画图的关键.2、见解析【分析】根据简单组合体的三视图的意义和画法画出相应的图形即可.【详解】这个组合体的三视图如下:【点睛】本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体三视图的画法是正确解答的关键.3、见解析【分析】根据立方体的三视图解答.【详解】解:如图:【点睛】此题考查立体图形的三视图画法,正确掌握画立体图形的方法及掌握立体图形的特点是解题的关键.4、见解析【分析】根据主视图的定义画出从前面先后看得到的图形,根据左视图的定义画出从左向右看得到的图形,根据俯视图的定义画出从上向下看得到的图形即可.【详解】解:主视图是从前面先后看得到的图形,图形分三列,左边列有三层3个小正方形,中间列一层1个小正方形,右边列有两层2个小正方形,根据看到的图形可画出主视图,左视图是从左向右看得到的图形,图形分三列,左边列左边列有三层3个小正方形,中间列两层2个小正方形,右边列有一层1个小正方形,根据看到的图形可画出左视图,俯视图是从上向下看得到的图形,图形分三列,上对齐,左边列有3个小正方形,中间列2个小正方形,右边列有1个小正方形,根据看到的图形可画出俯视图.【点睛】本题考查简单组合体的三视图,掌握三视图的定义是解题关键.5、(1)22(2)见解析【分析】(1)直接利用几何体的表面积求法,分别求出各侧面即可;(2)利用从不同角度进而得出观察物体进而得出左视图和俯视图.(1)解:这个几何体的表面积为2×4+2×4+2×3=22,故答案为:22.(2)解:如图所示:.【点睛】本题主要考查了几何体的表面积求法以及三视图画法,注意观察角度是解题关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后作业题,共33页。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试测试题,共20页。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试同步训练题,共20页。试卷主要包含了如图所示的几何体的主视图为,如图,该几何体的左视图是,如图所示的几何体的俯视图是等内容,欢迎下载使用。