![2021-2022学年最新沪科版九年级数学下册第25章投影与视图定向测评试题(含答案解析)第1页](http://m.enxinlong.com/img-preview/2/3/12678449/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新沪科版九年级数学下册第25章投影与视图定向测评试题(含答案解析)第2页](http://m.enxinlong.com/img-preview/2/3/12678449/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新沪科版九年级数学下册第25章投影与视图定向测评试题(含答案解析)第3页](http://m.enxinlong.com/img-preview/2/3/12678449/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学九年级下册第25章 投影与视图综合与测试课时训练
展开
这是一份数学九年级下册第25章 投影与视图综合与测试课时训练,共21页。试卷主要包含了如图所示的几何体的俯视图是,如图几何体的主视图是,如图所示的几何体的左视图为等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是由6个同样大小的正方体摆成,将标有“1”的这个正方体去掉,所得几何体( )A.俯视图不变,左视图不变 B.主视图改变,左视图改变C.俯视图改变,主视图改变 D.主视图不变,左视图改变2、下面图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是( )A.四棱柱 B.四棱锥 C.圆柱 D.圆锥3、如图是一个几何体的实物图,则其主视图是( )A. B. C. D.4、如图所示的几何体的俯视图是( )A. B.C. D.5、如图所示的工件中,该几何体的俯视图是( )A. B. C. D.6、如图几何体的主视图是( )A. B. C. D.7、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )A. B.C. D.8、如图所示的几何体的左视图为( )A. B. C. D.9、根据三视图,求出这个几何体的侧面积( )A. B. C. D.10、图中几何体的左视图是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知某几何体的三视图如图所示,根据图中数据求得该几何体的体积为_____.2、用若干个大小相同的小立方块搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示,则搭出这个几何体至少需要_____个小立方体,最多需要_____个小立方体.3、请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是______4、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为___.5、如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB=_____米.三、解答题(5小题,每小题10分,共计50分)1、分别画出图中两个几何体(其中第2个几何体是两个高不相等的圆锥组成的组合体)的三视图.2、如图是由7个棱长为1的小正方体搭成的几何体.(1)请分别画出这个几何体的主视图、左视图和俯视图;(2)这个几何体的表面积为 (包括底面积);(3)若使得该几何体的俯视图和左视图不变,则最多还可以放 个相同的小正方体.3、由5个相同的小正方体搭成的物体的俯视图如图所示,这个物体有几种搭法?4、根据要求回答以下视图问题:(1)如图①,它是由5个小正方体摆成的一个几何体,将正方体①移走后,新几何体与原几何体相比, 视图没有发生变化;(2)如图②,请你在网格纸中画出该几何体的主视图(请用斜线阴影表示);(3)如图③,它是由几个小正方体组成的几何体的俯视图,小正方形上的数字表示该位置上的正方体的个数,请在网格纸中画出该几何体的左视图(请用斜线阴影表示).5、如图是某几何体从正面、左面、上面看到的形状图.(1)这个几何体的名称是________.(2)若从正面看到的长方形的宽为4cm,长为9cm,从左面看到的宽为3cm,从上面看到的直角三角形的斜边为5cm,这个几何体中所有棱长的和是多少?它的侧面积是多少? -参考答案-一、单选题1、A【分析】根据几何体的三视图判断即可;【详解】根据已知图形,去掉标有“1”的这个正方体,主视图改变,俯视图和左视图不变;故选A.【点睛】本题主要考查了几何体三视图的应用,准确分析判断是解题的关键.2、C【分析】根据三视图即可完成.【详解】此几何体为一个圆柱故选:C.【点睛】本题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.3、C【分析】找到从正面看所得到的图形即可.【详解】解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图.故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4、B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:这个几何体的俯视图是 ,故选:B.【点睛】本题考查了俯视图,熟记俯视图的定义(从物体的上面观察得到的视图)是解题关键.5、B【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个同心圆,外圆是实线,内圆是虚线,故选:B.【点睛】本题考查了简单组合体的三视图,解题关键是掌握从上边看得到的图形是俯视图.6、A【分析】根据题意可得:从正面看,主视图是两个长方形,即可求解.【详解】解:从正面看,主视图是两个长方形.故选:A【点睛】本题主要考查了几何体的三视图,熟练掌握几何体的三视图的特征是解题的关键.7、D【分析】左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.【详解】解:该几何体从左面看到的形状图有2列,第1列看到1个正方形,第2列看到2个正方形,所以左视图是D,故选D【点睛】本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.8、C【分析】找到从左边看所得到的图形即可,注意所有看得到的棱用实线表示,看不到的部分用虚线表示【详解】解:从左边看到的图形是:故选C【点睛】本题考查了简单组合体的三视图,理解看不到的且存在的是虚线解题的关键.9、D【分析】首先根据题意得出这个几何体是圆柱,然后根据三视图得出圆柱的高和底面半径,最后根据圆柱的侧面积公式求解即可.【详解】解:由题意知,几何体是底面直径为10、高为20 的圆柱,所以其侧面积为.故选:D.【点睛】此题考查了几何体的三视图,求圆柱的表面积,解题的关键是熟练掌握几何体的三视图,求圆柱的表面积公式.10、B【分析】根据左视图是从物体左面看,所得到的图形进行解答即可.【详解】解:图中几何体的左视图是:故选:B.【点睛】本题主要考查了简单组合体的三视图,解题的关键是掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.二、填空题1、.【分析】根据给出的几何体的三视图可知几何体是由圆柱体和圆锥体构成,从而根据三视图的特点得知高和底面直径,代入体积公式计算即可.【详解】由三视图可知,几何体是由圆柱体和圆锥体构成,圆柱和圆锥的底面直径均为2,高分别为4和1,∴圆锥和圆柱的底面积为π,故该几何体的体积为:4π+π=π,故答案为:π.【点睛】本题考查了由三视图判断几何体,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.2、7, 10. 【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】解:综合主视图和俯视图,这个几何体的底层有5个小正方体,第二层最少有2个,最多有5个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:5+2=7个,至多需要小正方体木块的个数为:5+5=10个,故答案为:7,10.【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3、球【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:球的3个视图都为圆;正方体的3个视图都为正方形;所以主视图、左视图和俯视图都一样的几何体为球、正方体等.故答案为:答案不唯一,如球、正方体等.【点睛】本题考查了几何体的三种视图,掌握常见几何体的三视图是关键.4、7【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层正方体的可能的最少个数,相加即可.【详解】解:由俯视图易得最底层有4个正方体,由主视图第二层最少有2个正方体,由主视图第三层最少有1个正方体,那么最少有4+2+1=7个立方体.故答案是:7.【点睛】本题考查了由三视图判断几何体.俯视图小正方形的个数即为最底层的小正方体的个数,主视图第二层和第三层小正方形的个数即为其余层数小正方体的最少个数.5、6【分析】根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似解答.【详解】解:∵ ,当王华在CG处时,Rt△DCG∽Rt△DBA,即=,当王华在EH处时,Rt△FEH∽Rt△FBA,即,∴=,∵CG=EH=1.5米,CD=1米,CE=3米,EF=2米,设AB=x,BC=y,∴,即,即2(y+1)=y+5,解得:y=3,则,解得,x=6米.即路灯A的高度AB=6米.【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度.三、解答题1、见解析【分析】(1)从正面看得到的图形是三角形,从左面看得到的图形是长方形,从上面看得到的图形是中间有竖线的长方形;(2)从正面和左面看是上下两个不同的等腰三角形;从上面看是一个带圆心的圆.【详解】解:(1)如图所示:(2)如图所示:【点睛】本题考查了作图-三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线.2、(1)见解析;(2)30;(3)3【分析】(1)根据三视图的画法画出相应的图形即可;(2)三视图面积的2倍加被挡住的面积即可;(3)根据俯视图和左视图的特点即可求解.【详解】(1)这个几何体的主视图、左视图和俯视图如下:(2)(6+4+4)×2+2=30,故答案为:30;(3)保持这个几何体的俯视图和左视图不变,可往第一列和第二列分别添加1个、2个小正方体,故答案为:3.【点睛】此题主要考查了三视图,正确掌握不同视图的观察角度是解题关键.3、3种,见解析【分析】根据俯视图分析底层有三个小正方形,上层一个,还有一个小正方体有3种放置即可.【详解】解:∵从小正方体搭成的物体的俯视图如图所示,是从物体的上方向下看得到的图形, ∴从俯视图看,反映出两层,底层有3个小正方体,从前往后排,第一排两个,第二排一个,左对齐,上层有一个小正方体,在第一排中间偏右,∵有5个小正方体,还有一个小正方体与其他底层三个小正方形重叠或与二层重叠,底层从左边数第一排第一列不能重叠放置,上层小正方体不能固定,为此底层重叠放置有两种如图1,图2,与上层小正方体重叠一种图3,一共有3种搭法,它们的立体图分别如图.【点睛】本题考查由俯视图画立体图形,利用俯视图确定底层有3个小正方体,上层有一个小正方体,另一正方体有3个位置放法是解题关键.4、(1)主(2)见解析(3)见解析【分析】(1)根据移开后的主视图和没有移开时的主视图一致即可求解;(2)根据题意画出主视图即可;(3)根据从左边起各列的小正方形数分别为2,3,1,画出左视图即可.(1)将正方体①移走后,新几何体与原几何体相比主视图没有变化,如图,故答案为:主(2)图②的主视图如图,(3)图③的左视图如图,【点睛】本题考查了画三视图,根据立体图形得出三视图是解题的关键.5、(1)直三棱柱;(2)所有棱长的和是51cm,它的侧面积为108cm2【分析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长分别得出棱长和与侧面积.【详解】(1)这个几何体是直三棱柱;故答案为:直三棱柱(2)由题意可得:它的所有棱长之和为:(3+4+5)×2+9×3=51(cm);它的侧面积为:(3+4+5)×9=108(cm2)答:所有棱长的和是51cm,它的侧面积为108cm2.【点睛】此题主要考查了由三视图判断几何体的形状,正确得出物体的形状是解题关键.
相关试卷
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试当堂达标检测题,共22页。试卷主要包含了如图所示的几何体,其左视图是.,如图所示的几何体的俯视图是,图1,分别从正面,下列物体中,三视图都是圆的是等内容,欢迎下载使用。
这是一份初中沪科版第25章 投影与视图综合与测试综合训练题,共17页。试卷主要包含了分别从正面,如图所示的几何体的主视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试课后作业题,共23页。试卷主要包含了如图所示的礼品盒的主视图是,如图所示,该几何体的俯视图是,如图所示几何体的左视图是等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)