![【真题汇总卷】2022年湖北省武汉市武昌区中考数学模拟测评 卷(Ⅰ)(含答案详解)第1页](http://m.enxinlong.com/img-preview/2/3/12677713/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【真题汇总卷】2022年湖北省武汉市武昌区中考数学模拟测评 卷(Ⅰ)(含答案详解)第2页](http://m.enxinlong.com/img-preview/2/3/12677713/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【真题汇总卷】2022年湖北省武汉市武昌区中考数学模拟测评 卷(Ⅰ)(含答案详解)第3页](http://m.enxinlong.com/img-preview/2/3/12677713/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【真题汇总卷】2022年湖北省武汉市武昌区中考数学模拟测评 卷(Ⅰ)(含答案详解)
展开
这是一份【真题汇总卷】2022年湖北省武汉市武昌区中考数学模拟测评 卷(Ⅰ)(含答案详解),共21页。试卷主要包含了抛物线的顶点坐标是,下列利用等式的性质,错误的是,已知圆O的半径为3,AB,有下列说法等内容,欢迎下载使用。
2022年湖北省武汉市武昌区中考数学模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一列火车匀速行驶,经过一条长400米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的长为( )A. B.133 C.200 D.4002、下列图形中,是中心对称图形的是( )A. B. C. D.3、 “科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如下表:视力4.34.44.54.64.74.84.95.0人数2369121053则视力的众数是( )A.4.5 B.4.6 C.4.7 D.4.84、抛物线的顶点坐标是( )A. B. C. D.5、下列利用等式的性质,错误的是( )A.由,得到 B.由,得到C.由,得到 D.由,得到6、已知圆O的半径为3,AB、AC是圆O的两条弦,AB=3,AC=3,则∠BAC的度数是( )A.75°或105° B.15°或105° C.15°或75° D.30°或90°7、某三棱柱的三种视图如图所示,已知俯视图中,,下列结论中:①主视图中;②左视图矩形的面积为;③俯视图的正切值为.其中正确的个数为( )A.个 B.个 C.个 D.个8、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )A.1 B.2 C.3 D.49、若菱形的周长为8,高为2,则菱形的面积为( )A.2 B.4 C.8 D.1610、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )A.5或6 B.6或7 C.5或6或7 D.6或7或8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点O是的AB边上一点,,以OB长为半径作,与AC相切于点D.若,,则的半径长为______.2、要使成为完全平方式,那么b的值是______.3、计算:=______.4、方程x(2x﹣1)=2x﹣1的解是 ___;5、如图,四边形中,,,,在、上分别找一点M、N,当周长最小时,的度数是______________.三、解答题(5小题,每小题10分,共计50分)1、解方程:.2、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).(1)如图1,在BC上找一点P,使∠BAP=45°;(2)如图2,作△ABC的高BH.3、如图,在平行四边形ABCD中,已知AD>AB.(1)作∠BCD的角平分线交AD于点E,在BC上截取CF=CD(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接EF,猜想四边形CDEF的形状,并证明你的结论.4、分解因式:(1);(2).5、如图,抛物线y=x2﹣2x+c与x轴交于A,B两点(点A在点B左侧),与y轴交于点C(0,﹣3).(1)求AB的长.(2)将点A向上平移n个单位至点E,过点E作DFx轴,交抛物线与点D,F.当DF=6时,求n的值. -参考答案-一、单选题1、C【分析】设火车的车长是x米,根据经过一条长400m的隧道需要30秒的时间,可求火车速度,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,可求火车上速度,根据车速相同可列方程求解即可.【详解】解:设火车的长度是x米,根据题意得出:=,解得:x=200,答:火车的长为200米;故选择C.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.2、B【分析】根据中心对称图形的定义求解即可.【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.【点睛】此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.3、C【分析】出现次数最多的数据是样本的众数,根据定义解答.【详解】解:∵4.7出现的次数最多,∴视力的众数是4.7,故选:C.【点睛】此题考查了众数的定义,熟记定义是解题的关键.4、A【分析】根据二次函数y=a(x-h)2+k的性质解答即可.【详解】解:抛物线的顶点坐标是,故选A.【点睛】本题考查了二次函数y=a(x-h)2+k(a,h,k为常数,a≠0)的性质,熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键. y=a(x-h)2+k是抛物线的顶点式,a决定抛物线的形状和开口方向,其顶点是(h,k),对称轴是x=h.5、B【分析】根据等式的性质逐项分析即可.【详解】A.由,两边都加1,得到,正确;B.由,当c≠0时,两边除以c,得到,故不正确;C.由,两边乘以c,得到,正确;D.由,两边乘以2,得到,正确;故选B.【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.6、B【分析】根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论.【详解】解:分别作OD⊥AC,OE⊥AB,垂足分别是D、E.∵OE⊥AB,OD⊥AB,∴AE=AB=,AD=AC=,∴,∴∠AOE=45°,∠AOD=30°,∴∠CAO=90°-30°=60°,∠BAO=90°-45°=45°,∴∠BAC=45°+60°=105°,同理可求,∠CAB′=60°-45°=15°.∴∠BAC=15°或105°,故选:B.【点睛】本题考查的是垂径定理及直角三角形的性质,解答此题时进行分类讨论,不要漏解.7、A【分析】过点A作AD⊥BC与D,根据BD=4,,可求AD=BD,根据,得出BC=7,可得DC=BC-BD=7-4=3可判断①;根据左视图矩形的面积为3×6=可判断②;根据tanC可判断③.【详解】解:过点A作AD⊥BC与D,∵BD=4,,∴AD=BD,∵,∴,∴BC=7,∴DC=BC-BD=7-4=3,∴①主视图中正确;∴左视图矩形的面积为3×6=,∴②正确;∴tanC,∴③正确;其中正确的个数为为3个.故选择A.【点睛】本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.8、A【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.9、B【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.10、C【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【详解】解:如图,原来多边形的边数可能是5,6,7.故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.二、填空题1、##【分析】在Rt△ABC中,利用正弦函数求得AB的长,再在Rt△AOD中,利用正弦函数得到关于r的方程,求解即可.【详解】解:在Rt△ABC中,BC=4,sinA=,∴=,即=,∴AB=5,连接OD,∵AC是⊙O的切线,∴OD⊥AC,设⊙O的半径为r,则OD= OB=r,∴AO=5- r,在Rt△AOD中,sinA=,∴=,即=,∴r=.经检验r=是方程的解,∴⊙O的半径长为.故答案为:.【点睛】本题考查了切线的性质,正弦函数,解题的关键是掌握切线的性质、解直角三角形等知识点.2、【分析】根据完全平方式的性质:,可得出答案.【详解】∵是完全平方式∴解得故答案为.【点睛】本题考查完全平方式,熟记完全平方式的形式,找出公式中的a和b的关键.3、2【分析】根据二次根式乘除法运算法则进行计算即可得到答案.【详解】解:原式,故答案为:.【点睛】此题主要考查了二次根式的乘除运算,掌握运算法则是解答此题的关键.4、x1=,x2=1【分析】移项后提公因式,然后解答.【详解】解:移项,得x(2x-1)-(2x-1)=0,提公因式,得,(2x-1)(x-1)=0,解得2x-1=0,x-1=0,x1=,x2=1.故答案为:x1=,x2=1.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.5、128°【分析】分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE ,则当M、N在线段EF上时△AMN的周长最小,此时由对称的性质及三角形内角和定理、三角形外角的性质即可求得结果.【详解】分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE,如图 由对称的性质得:AN=FN,AM=EM∴∠F=∠NAD,∠E=∠MAB∵AM+AN+MN=EM+FN+MN≥EF∴当M、N在线段EF上时,△AMN的周长最小∵∠AMN+∠ANM=∠E+∠MAB+∠F+∠NAD=2∠E+2∠F=2(∠E+∠F)=2(180°−∠BAD)=2×(180°−116°)=128°故答案为:128°【点睛】本题考查了对称的性质,两点间线段最短,三角形内角和定理与三角形外角的性质等知识,作点A关于BC、DC的对称点是本题的关键.三、解答题1、【分析】先去分母,去括号,再移项、合并同类项,最后系数化为1即可得答案.【详解】去分母得:,去括号得:,移项得:,合并同类项得:,系数化1得:.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.2、(1)见解析;(2)见解析【分析】(1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;(2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.【详解】解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求, 理由如下:根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,∴△ABM≌△BNQ,∴AB=BN,∠ABM=∠BNQ,∴∠BAP=∠BNP,∵∠NBQ+∠BNQ=90°,∴∠ABM +∠BNQ=90°,∴∠ABN=90°,∴∠BAP=∠BNP=45°;(2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.理由如下:过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,∴△ACD≌△QBG,∴∠ACD=∠QBG,∵∠QBG+∠BQG=90°,∴∠ACD +∠BQG=90°,∴∠CHQ=90°,∴BH⊥AC,即BH为△ABC的高.【点睛】本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.3、(1)见解析(2)见解析【分析】(1)根据要求作出图形即可.(2)根据邻边相等的平行四边形是菱形证明即可.【小题1】解:如图,射线CE,线段CF即为所求.【小题2】结论:四边形CDEF是菱形.理由:∵四边形ABCD是平行四边形,∴AD∥CB,∴∠DEC=∠ECF,∵CE平分∠DCB,∴∠DCE=∠ECF,∴∠DEC=∠DCE,∴DE=CD,∵CF=CD,∴DE=CF,∵DE∥CF,∴四边形CDEF是平行四边形,∵CD=CF,∴四边形CDEF是菱形.【点睛】本题考查作图-基本作图,菱形的判定,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、(1)(2)【分析】(1)提取公因式,然后用完全平方公式进行化简即可.(2)提取公因式,然后用平方差公式进行化简即可.(1)解:原式;(2)解:原式.【点睛】本题考查了乘法公式进行因式分解.解题的关键在于熟练掌握乘法公式.5、(1)AB的长为4;(2)n的值为5.【分析】(1)利用二次函数表达式,求出其与x轴的交点、的坐标,其横坐标之差的绝对值即为AB的长.(2)利用二次函数的对称性,求出F点的横坐标,代入二次函数表达式,求出纵坐标,最后求得n的值.【详解】(1)解:把(0,-3)代入y=x2-2x-c得c=-3,令y=x2-2x-3=0,解得x1=3,x2=-1,∴A(-1,0),B(3,0),∴AB=3-(-1)=4.(2)解:作对称轴x=1交DF于点G,G点横坐标为1,如图所示:由题意可设:点F坐标为(,),、关于二次函数的对称轴. DG=GF==3, ∴,∴n=5.【点睛】本题主要是考查了二次函数与x轴交点坐标以及二次函数的对称性,熟练应用二次函数的对称性进行解题,是求解这类二次函数题目的关键.
相关试卷
这是一份【真题汇总卷】2022年湖北省武汉市武昌区中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共20页。试卷主要包含了下列命题中,是真命题的是,已知圆O的半径为3,AB等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年湖北省武汉市武昌区中考数学模拟专项测评 A卷(含答案解析),共22页。试卷主要包含了已知4个数,已知,,且,则的值为,下列利用等式的性质,错误的是等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年湖北省武汉市武昌区中考数学模拟专项测试 B卷(含答案详解),共21页。试卷主要包含了下列利用等式的性质,错误的是,已知圆O的半径为3,AB等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)