【真题汇编】2022年广东省深圳市南山区中考数学真题模拟测评 (A)卷(含答案详解)
展开2022年广东省深圳市南山区中考数学真题模拟测评 (A)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列二次根式中,不能与合并的是( )
A. B. C. D.
2、下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
3、下列命题,是真命题的是( )
A.两条直线被第三条直线所截,内错角相等
B.邻补角的角平分线互相垂直
C.相等的角是对顶角
D.若,,则
4、下列几何体中,俯视图为三角形的是( )
A. B.
C. D.
5、已知点与点关于y轴对称,则的值为( )
A.5 B. C. D.
6、平面直角坐标系中,已知点,,其中,则下列函数的图象可能同时经过P,Q两点的是( ).
A. B.
C. D.
7、一把直尺与一块直角三角板按下图方式摆放,若,则( )
A.52° B.53° C.54° D.63°
8、如图,点在直线上,平分,,,则( )
A.10° B.20° C.30° D.40°
9、已知,则的值为( )
A. B. C. D.
10、下列说法正确的是( )
A.任何数的绝对值都是正数 B.如果两个数不等,那么这两个数的绝对值也不相等
C.任何一个数的绝对值都不是负数 D.只有负数的绝对值是它的相反数
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、不等式﹣5+x≤0非负整数解是____.
2、请写出一个开口向下且过点(0,﹣4)的抛物线表达式为 _________________.
3、请写出一个过第二象限且与轴交于点的直线表达式___.
4、如图,在一条可以折叠的数轴上,A、B两点表示的数分别是,3,以点C为折点,将此数轴向右对折,若点A折叠后在点B的右边,且,则C点表示的数是______.
5、抛物线与x轴的两个交点之间的距离为4,则t的值是______.
三、解答题(5小题,每小题10分,共计50分)
1、对于平面直角坐标系中的任意一点,给出如下定义:记,,将点与称为点的一对“相伴点”.
例如:点的一对“相伴点”是点与.
(1)点的一对“相伴点”的坐标是______与______;
(2)若点的一对“相伴点”重合,则的值为______;
(3)若点的一个“相伴点”的坐标为,求点的坐标;
(4)如图,直线经过点且平行于轴.若点是直线上的一个动点,点与是点的一对“相伴点”,在图中画出所有符合条件的点,组成的图形.
2、如图,边长为1的正方形ABCD中,对角线AC、BD相交于点O,点Q、R分别在边AD、DC上,BR交线段OC于点P,,QP交BD于点E.
(1)求证:;
(2)当∠QED等于60°时,求的值.
3、如图,二次函数y=a(x﹣1)2﹣4a(a≠0)的图像与x轴交于A,B两点,与y轴交于点C(0,﹣).
(1)求二次函数的表达式;
(2)连接AC,BC,判定△ABC的形状,并说明理由.
4、定义:如图①.如果点D在的边上且满足.那么称点D为的“理根点”,如图②,在中,,如果点D是的“理想点”,连接.求的长.
5、如图,直线与x,y轴分别交于点B,A,抛物线过点A.
(1)求出点A,B的坐标及c的值;
(2)若函数在时有最小值为,求a的值;
(3)当时,在抛物线上是否存在点M,使得,若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
-参考答案-
一、单选题
1、B
【分析】
先把每个选项的二次根式化简,再逐一判断与的被开方数是否相同,被开方数相同则能合并,不相同就不能合并,从而可得答案.
【详解】
解:能与合并, 故A不符合题意;
不能与合并,故B不符合题意;
能与合并, 故C不符合题意;
能与合并, 故D不符合题意;
故选B
【点睛】
本题考查的是同类二次根式的概念,掌握“同类二次根式的概念进而判断两个二次根式能否合并”是解本题的关键.
2、A
【详解】
解:.既是中心对称图形又是轴对称图形,故此选项符合题意;
.是轴对称图形,不是中心对称图形,故此选项不合题意;
.是轴对称图形,不是中心对称图形,故此选项不合题意;
.不是轴对称图形,是中心对称图形,故此选项不合题意.
故选:A.
【点睛】
本题考查的是中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、B
【分析】
利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项.
【详解】
解:A、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;
、邻补角的角平分线互相垂直,正确,是真命题,符合题意;
、相等的角不一定是对顶角,故错误,是假命题,不符合题意;
、平面内,若,,则,故原命题错误,是假命题,不符合题意,
故选:.
【点睛】
考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大.
4、C
【分析】
依题意,对各个图形的三视图进行分析,即可;
【详解】
由题知,对于A选项:主视图:三角形;侧视图为:三角形;俯视图为:有圆心的圆;
对于B选项:主视图:三角形;侧视图为:三角形;俯视图为:四边形;
对于C选项:主视图:长方形形;侧视图为:两个长方形形;俯视图为:三角形;
对于D选项:主视图:正方形;侧视图:正方形;俯视图:正方形;
故选:C
【点睛】
本题考查几何图形的三视图,难点在于空间想象能力及画图的能力;
5、A
【分析】
点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.
【详解】
解:由题意知:
解得
∴
故选A.
【点睛】
本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.
6、B
【分析】
先判断再结合一次函数,二次函数的增减性逐一判断即可.
【详解】
解:
同理:
当时,随的增大而减小,
由可得随的增大而增大,故A不符合题意;
的对称轴为: 图象开口向下,
当时,随的增大而减小,故B符合题意;
由可得随的增大而增大,故C不符合题意;
的对称轴为: 图象开口向上,
时,随的增大而增大,故D不符合题意;
故选B
【点睛】
本题考查的是一次函数与二次函数的图象与性质,掌握“一次函数与二次函数的增减性”是解本题的关键.
7、B
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,,
∴,
∴,
故选B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.
8、A
【分析】
设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.
【详解】
解:设∠BOD=x,
∵OD平分∠COB,
∴∠BOD=∠COD=x,
∴∠AOC=180°-2x,
∵∠AOE=3∠EOC,
∴∠EOC=∠AOC==,
∵∠EOD=50°,
∴,
解得:x=10,
故选A.
【点睛】
本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.
9、A
【分析】
由设,代入计算求解即可.
【详解】
解:∵
∴设
∴
故选:A
【点睛】
本题主要考查发比例的性质,熟练掌握比例的性质是解答本题的关键.
10、C
【分析】
数轴上表示数的点与原点的距离是数的绝对值,非负数的绝对值是它的本身,非正数的绝对值是它的相反数,互为相反数的两个数的绝对值相等,再逐一分析各选项即可得到答案.
【详解】
解:任何数的绝对值都是非负数,故A不符合题意;
如果两个数不等,那么这两个数的绝对值可能相等,也可能不相等,比方 但 故B不符合题意;
任何一个数的绝对值都不是负数,表述正确,故C符合题意;
非正数的绝对值是它的相反数,故D不符合题意;
故选C
【点睛】
本题考查的是绝对值的含义,求解一个数的绝对值,掌握“绝对值的含义”是解本题的关键.
二、填空题
1、0,1,2,3,4,5
【分析】
先根据不等式的基本性质求出x的取值范围,再根据x的取值范围求出符合条件的x的非负整数解即可.
【详解】
解:移项得:x≤5,
故原不等式的非负整数解为:0,1,2,3,4,5.
故答案为:0,1,2,3,4,5.
【点睛】
本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
2、y=﹣x2﹣4(答案不唯一)
【分析】
根据二次函数的性质,二次项系数小于0时,函数图象的开口向下,再利用过点(0,﹣4)得出即可.
【详解】
解:∵抛物线开口向下且过点(0,﹣4),
∴可以设顶点坐标为(0,﹣4),
故解析式为:y=﹣x2﹣4(答案不唯一).
故答案为:y=﹣x2﹣4(答案不唯一).
【点睛】
本题考查了二次函数图象的性质,是开放型题目,答案不唯一.
3、(答案不唯一)
【分析】
因为直线过第二象限,与y轴交于点(0,-3),则b=-3.写一个满足题意的直线表达式即可
【详解】
解:直线过第二象限,且与轴交于点,
,,
直线表达式为:.
故答案为:(答案不唯一).
【点睛】
本题考查了一次函数的图像和性质,解题的关键是熟记一次函数的图像和性质.
4、
【分析】
根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数.
【详解】
解:∵A,B表示的数为-7,3,
∴AB=3-(-7)=4+7=10,
∵折叠后AB=2,
∴BC==4,
∵点C在B的左侧,
∴C点表示的数为3-4=-1.
故答案为:-1.
【点睛】
本题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键.
5、
【分析】
设抛物线与x轴的两个交点的横坐标为 则是的两根,且 再利用两个交点之间的距离为4列方程,再解方程可得答案.
【详解】
解:设抛物线与x轴的两个交点的横坐标为
是的两根,且
两个交点之间的距离为4,
解得: 经检验:是原方程的根且符合题意,
故答案为:
【点睛】
本题考查的是二次函数与轴的交点坐标,两个交点之间的距离,掌握“求解二次函数与轴的交点坐标”是解本题的关键.
三、解答题
1、
(1),
(2)-4
(3)或
(4)见解析
【分析】
(1)根据相伴点的含义可得,,从而可得答案;
(2)根据相伴点的含义可得,再解方程可得答案;
(3)由点的一个“相伴点”的坐标为,则另一个的坐标为 设点,再根据相伴点的含义列方程组,再解方程组即可;
(4)设点,可得,,可得点的一对“相伴点”的坐标是与,再画出所在的直线即可.
(1)
解:,
,,
点的一对“相伴点”的坐标是与,
故答案为:,;
(2)
解:点,
,,
点的一对“相伴点”的坐标是和,
点的一对“相伴点”重合,
,
,
故答案为:;
(3)
解:设点,
点的一个“相伴点”的坐标为,则另一个的坐标为
或,
或,
或;
(4)
解:设点,
,,
点的一对“相伴点”的坐标是与,
当点的一个“相伴点”的坐标是,
点在直线上,
当点的一个“相伴点”的坐标是,
点在直线上,
即点,组成的图形是两条互相垂直的直线与直线,如图所示,
【点睛】
本题考查的是新定义情境下的坐标与图形,平行线于坐标轴的直线的特点,二元一次方程组的应用,理解新定义再进行计算或利用新定义得到方程组与图形是解本题的关键.
2、
(1)见解析
(2)
【分析】
(1)根据正方形的性质,可得∠CAD=∠BDC=45°,∠OBP+∠OPB=90°,再由,可得∠OBP=∠OPE,即可求证;
(2)设OE=a,根据∠QED等于60°,可得∠BEP=60°,然后利用锐角三角函数,可得BD=2OB=6a, ,然后根据相似三角形的对应边成比例,即可求解.
(1)
证明:在正方形ABCD中,
∠CAD=∠BDC=45°,BD⊥AC,
∴∠BOC=90°,
∴∠OBP+∠OPB=90°,
∵,
∴∠BPQ=90°,
∴∠OPE+∠OPB=90°,
∴∠OBP=∠OPE,
∴;
(2)
解:设OE=a,
在正方形ABCD中,∠POE=90°,OA=OB=OD,
∵∠QED等于60°,
∴∠BEP=60°,
在 中,
,,
∵,∠BEP=60°,
∴∠PBE=30°,
∴, ,
∴OA=OB=BE-OE=3a,
∴BD=2OB=6a,
∴ ,
∵,
∴.
【点睛】
本题主要考查了相似三角形的判定和性质,解直角三角形,熟练掌握相似三角形的判定和性质定理,特殊角锐角三角函数值是解题的关键.
3、
(1);
(2)直角三角形,理由见解析.
【分析】
(1)将点C的坐标代入函数解析式,即可求出a的值,即得出二次函数表达式;
(2)令,求出x的值,即得出A、B两点的坐标.再根据勾股定理,求出三边长.最后根据勾股定理逆定理即可判断的形状.
(1)
解:将点C代入函数解析式得:,
解得:,
故该二次函数表达式为:.
(2)
解:令,得:,
解得:,.
∴A点坐标为(-1,0),B点坐标为(3,0).
∴OA=1,OC=,,
∴,
.
∵,即,
∴的形状为直角三角形.
【点睛】
本题考查利用待定系数法求函数解析式,二次函数图象与坐标轴的交点坐标,勾股定理逆定理.根据点C的坐标求出函数解析式是解答本题的关键.
4、.
【分析】
只要证明CD⊥AB即可解决问题.
【详解】
解:如图②中,
∵点D是△ABC的“理想点”,
∴∠ACD=∠B,
∵,
∴,
∴,
,
在Rt△ABC中,
,
∴BC= ,
∵,
.
【点睛】
本解考查了直角三角形判定和性质,理解新定义是解本题的关键.
5、
(1)A(0,1),B(-2,0),c=1.
(2)5或.
(3),,
【分析】
(1)根据两轴的特征可求y=x+1与x轴,y轴的交点坐标,然后将点A坐标代入抛物线解析式即可;
(2)将抛物线配方为顶点式,根据抛物线开口向上与向下两种情况,当a>0,在—1≤x≤4时,抛物线在顶点处取得最小值,当x=1时,y有最小值, 当a<0,在—1≤x≤4时,离对称轴越远函数值越小,即可求解;
(3)存在符合条件的M点的坐标, 当时,抛物线解析式为:,设点P在y轴上,使△ABP的面积为1,点P(0,m),, 求出点P2(0,0),或P1(0,2),,可得点M在过点P与AB平行的两条直线上,①过点P2与 AB平行直线的解析式为:,联立方程组,解方程组得出,,②过点P1与AB平行的直线解析式为:,联立方程组,解方程组得出即可.
(1)
解:在y=x+1中,令y=0,得x=-2;
令x=0,得y=1,
∴A(0,1),B(-2,0).
∵抛物线y=ax2-2ax+c过点A,
∴c=1.
(2)
解:y=ax2-2ax+1=a(x2-2x+1-1)+1=a(x-1)2+1-a,
∴抛物线的对称轴为x=1,
当a>0,在—1≤x≤4时,抛物线在顶点处取得最小值,
∴当x=1时,y有最小值,
此时1-a=—4,解得a=5;
当a<0,在—1≤x≤4时,
∵4-1=3>1-(-1)=2,离对称轴越远函数值越小,
∴当x=4时,y有最小值,
此时9a+1-a=—4,
解得a= ,
综上,a的值为5或.
(3)
解:存在符合条件的M点的坐标,分别为,,,
当时,抛物线解析式为:,
设点P在y轴上,使△ABP的面积为1,点P(0,m),
∵,
∴,
解得,
∴点P2(0,0),或P1(0,2),
∴,
∴点M在过点P与AB平行的两条直线上,
①过点P2与 AB平行直线的解析式为:,
将代入中,
,
解得,,
∴,
②过点P1与AB平行的直线解析式为:,
将代入中,
,
解得,
∴ ,
综上所述,存在符合条件的M点的坐标,分别为,,.
【点睛】
本题考查一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立方程组,三角形面积,掌握一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立解方程组,三角形面积公式是解题关键.
【真题汇总卷】2022年广东省深圳市宝安区中考数学模拟真题测评 A卷(含答案详解): 这是一份【真题汇总卷】2022年广东省深圳市宝安区中考数学模拟真题测评 A卷(含答案详解),共24页。试卷主要包含了在下列运算中,正确的是等内容,欢迎下载使用。
【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解): 这是一份【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了若,则的值是,如图,在中,,,则的值为,下列式中,与是同类二次根式的是,下列命题中,真命题是等内容,欢迎下载使用。
【真题汇编】2022年中考数学真题模拟测评 (A)卷(含答案详解): 这是一份【真题汇编】2022年中考数学真题模拟测评 (A)卷(含答案详解),共23页。试卷主要包含了一组样本数据为1,下列说法正确的是,若+等内容,欢迎下载使用。