【真题汇编】2022年北京市石景山区中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列计算正确的是( )
A.B.C.D.
2、下列利用等式的性质,错误的是( )
A.由,得到B.由,得到
C.由,得到D.由,得到
3、下列一元二次方程有两个相等的实数根的是( )
A.B.
C. D.
4、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,( )
A.1B.C.D.
5、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( )
A.两点确定一条直线B.经过一点有无数条直线
C.两点之间,线段最短D.一条线段等于已知线段
6、为保护人民群众生命安全,减少交通事故,自2020年7月1日起,我市市民骑车出行必须严格遵守“一盔一带”规定,某头盔经销商经过统计发现:某品牌头盔从5月份到7月份销售量的月增长率相同,若5月份销售200个,7月份销售288个,设月增长率为x则可列出方程( )
A.200(+x)=288B.200(1+2x)=288
C.200(1+x)²=288D.200(1+x²)=288
7、若数a使关于x的方程=的解为非负数,使关于y的不等式组无解,则所有满足条件的整数a的值之和为( )
A.7B.12C.14D.18
8、下列命题正确的是
A.零的倒数是零
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
B.乘积是1的两数互为倒数
C.如果一个数是,那么它的倒数是
D.任何不等于0的数的倒数都大于零
9、下列方程是一元二次方程的是( )
A.x2+3xy=3B.x2+=3C.x2+2xD.x2=3
10、若关于x的不等式组无解,则m的取值范围是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、最新人口普查数据显示上海的常住人数约为24870000人,将24870000用科学记数法表示是:_______.
2、已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为______.
3、如图(1)是一个横断面为抛物线形状的拱桥,水面在l时,拱顶(拱桥洞的最高点)离水面3米,水面宽4米.如果按图(2)建立平面直角坐标系,那么抛物线的解析式是_____.
4、己知等腰三角形两条边长分别是4和10,,则此三角形的周长是___________________
5、今年“五一”小长假铁路上海站迎来客流出行高峰,四天共计发送旅客逾1340000人次,1340000用科学记数法表示为 ________(保留3个有效数字).
三、解答题(5小题,每小题10分,共计50分)
1、计算:
2、某市为了解七年级数学教育教学情况,对全市七年级学生进行数学综合素质测评,我校也随机抽取了部分学生的测试成绩作为样本进行分析,请根据图中所给出的信息,解答下列问题:
(1)在这次调查中被抽取学生的总人数为 人;将表示成绩类别为“中”的条形统计图补充完整.
(2)成绩类别为“优”的圆心角的度数为 .
(3)某校七年级共有750人参加了这次数学考试,估计本校七年级共有多少名学生的数学成绩可达到良或良以上等级?
3、已知,,OC平分∠AON.
(1)如图1,射线与射线OB均在∠MON的内部.
①若,∠MOA= °;
②若,直接写出∠MOA的度数(用含的式子表示);
(2)如图2,射线OA在∠MON的内部,射线OB在∠MON的外部.
①若,求∠MOA的度数(用含的式子表示);
②若在∠MOA的内部有一条射线OD,使得,直接写出∠MOD的度数.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根 x1,x2.
(1)求 k 的取值范围;
(2)请问是否存在实数 k,使得 x1+x2=1﹣x1x2 成立?若存在,求出 k 的值;若不存在, 说明理由.
5、利用幂的运算性质计算:﹣×÷(结果用幂的形式表示).
-参考答案-
一、单选题
1、D
【分析】
直接根据合并同类项运算法则进行计算后再判断即可.
【详解】
解:A. ,选项A计算错误,不符合题意;
B. ,选项B计算错误,不符合题意;
C. ,选项C计算错误,不符合题意;
D. ,计算正确,符合题意
故选:D
【点睛】
本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.
2、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
3、B
【分析】
根据一元二次方程根的判别式判断即可.
【详解】
解:、△,
方程有两个不等实数根,不符合题意;
、△,
方程有两个相等实数根,符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
、△,
方程有两个不相等实数根,不符合题意;
、△,
方程没有实数根,不符合题意;
故选:B.
【点睛】
本题考查了一元二次方程根的判别式,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.
4、C
【分析】
证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
【详解】
解:四边形是正方形,
,,,
,
,
,
,
,
,
,
,
,
是等腰直角三角形,
,
故选:C.
【点睛】
本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
5、C
【分析】
根据线段的性质进行解答即可.
【详解】
解:最短的路线选①的理由是两点之间,线段最短,
故选:C.
【点睛】
本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.
6、C
【分析】
设月增长率为x,根据等量关系用增长率表示7月份的销售量与销售288相等,可列出方程200(1+x)²=288即可.
【详解】
解:设月增长率为x,则可列出方程200(1+x)²=288.
故选C.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查列一元二次方程解增长率问题应用题,掌握列一元二次方程解增长率问题应用题方法与步骤,抓住等量关系列方程是解题关键.
7、C
【分析】
第一步:先用a的代数式表示分式方程的解.再根据方程的解为非负数,x-3≠0,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m的取值范围进行综合考虑确定最后m的取值范围,最后根据a为整数确定最后结果.
【详解】
解:,
2a-8=x-3,
x=2a-5,
∵方程的解为非负数,x-3≠0,
∴,
解得a≥且a≠4,
,
解不等式组得:,
∵不等式组无解,
∴5-2a≥-7,
解得a≤6,
∴a的取值范围:≤a≤6且a≠4,
∴满足条件的整数a的值为3、5、6,
∴3+5+6=14,
故选:C.
【点睛】
本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m的取值范围是解题关键.
8、B
【分析】
根据倒数的概念、有理数的大小比较法则判断.
【详解】
解:、零没有倒数,本选项说法错误;
、乘积是1的两数互为倒数,本选项说法正确;
、如果,则没有倒数,本选项说法错误;
、的倒数是,,则任何不等于0的数的倒数都大于零说法错误;
故选:.
【点睛】
本题考查了有理数的乘法及倒数的概念,熟练掌握倒数概念是关键.
9、D
【分析】
根据一元二次方程的定义逐个判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;
B.是分式方程,故本选项不符合题意;
C.不是方程,故本选项不符合题意;
D.是一元二次方程,故本选项符合题意;
故选:D.
【点睛】
本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.
10、D
【分析】
解两个不等式,再根据“大大小小找不着”可得m的取值范围.
【详解】
解:解不等式得:,
解不等式得:,
∵不等式组无解,
∴,
解得:,
故选:D.
【点睛】
此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.
二、填空题
1、
【分析】
绝对值大于1的数可以用科学记数法表示,一般形式为a×10n, 为正整数,且比原数的整数位数少1,据此可以解答.
【详解】
解:.
故答案是:.
【点睛】
本题考查用科学记数法表示较大的数,熟练掌握一般形式为 ,其中, 是正整数,解题的关键是确定 和 的值.
2、-3
【分析】
两个方程相加得出3x+3y=3a+9,根据已知条件x,y互为相反数知x+y=0,得出关于a的方程,解方程即可.
【详解】
解:两个方程相加得:3x+3y=3a+9,
∵x、y互为相反数,
∴x+y=0,
∴3x+3y=0,
∴3a+9=0,
解得:a=-3,
故答案为:-3.
【点睛】
本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于a的方程是解决问题的关· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
键.
3、
【分析】
设出抛物线方程y=ax2(a≠0)代入坐标(-2,-3)求得a.
【详解】
解:设出抛物线方程y=ax2(a≠0),由图象可知该图象经过(-2,-3)点,
∴-3=4a,
a=-,
∴抛物线解析式为y=-x2.
故答案为:.
【点睛】
本题主要考查二次函数的应用,解题的关键在于能够熟练掌握待定系数法求解二次函数解析式.
4、24
【分析】
分两种情考虑:腰长为4,底边为10;腰长为10,底边为4.根据这两种情况即可求得三角形的周长.
【详解】
当腰长为4,底边为10时,因4+4<10,则不符合构成三角形的条件,此种情况不存在;
当腰长为10,底边为4时,则三角形的周长为:10+10+4=24.
故答案为:24
【点睛】
本题考查了等腰三角形的性质及周长,要注意分类讨论.
5、1.34×106
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:1340000人次,用科学记数法表示为 1.34×106人次,
故答案为:1.34×106.
【点睛】
此题考查科学记数法,注意n的值的确定方法,当原数大于10时,n等于原数的整数数位减1,按此方法即可正确求解.
三、解答题
1、
【分析】
根据二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值代入进行实数的运算即可
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值,正确的计算是解题的关键.
2、
(1),见解析;
(2);
(3)
【分析】
(1)根据成绩类别为“良”的人数除以其所占的百分数求解抽取学生总人数,再由总人数乘以成绩类别为“中”所占的比例求解成绩类别为“中”的人数,即可补全条形统计图;
(2)求出成绩类别为“优”所占的百分数即可求得其所对应的圆心角;
(3)根据家长总人数乘以良或良以上等级所占的百分数即可求解.
(1)
解:22÷44%=50(人),50×20%=10(人),
答:这次调查中被抽取学生的总人数为50人,补全条形统计图如图所示:
故答案为:50;
(2)
解:360°×=72°,
答:成绩类别为“优”的圆心角的度数为72°,
故答案为:72°;
(3)
解:750×=480(名),
答:估计本校七年级共有480名学生的数学成绩可达到良或良以上等级
【点睛】
本题考查条形统计图和扇形统计图的信息关联、用样本估计总体、能从条形统计图和扇形统计图中获取有效信息是解答的关键.
3、(1)①40;②;(2)①;②.
【分析】
(1)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;
②先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;
(2)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;
②先根据角的和差可得,从而可得,再根据即可得.
【详解】
解:(1)①,
,
平分,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
,
故答案为:40;
②,
,
平分,
,
,
;
(2)①,
,
平分,
,
,
;
②如图,由(2)①已得:,,
,
,
,
.
【点睛】
本题考查了与角平分线有关的角度计算,熟练掌握角的运算是解题关键.
4、
(1)
(2)存在,
【分析】
(1)根据关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根,≥0,代入计算求出k的取值范围.
(2)根据根与系数的关系,,,根据题意列出等式,求出k的值,根据k的值是否在取值范围内做出判断.
(1)
解:∵关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根
根据题意得,
解得.
(2)
解:存在.
根据根与系数关系,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵x1+x2=1﹣x1x2,
∴,
解得,
∵.
∴存在实数k=-3,使得x1+x2=1﹣x1x2.
【点睛】
本题考查一元二次方程根的判别式及根与系数的关系,解一元二次方程,要注意根据k的取值范围来进取舍.
5、
【分析】
直接利用分指数幂的以及同底数幂的乘法和同底数幂的除法运算法则分别化简得出答案.
【详解】
解:,
,
,
,
.
【点睛】
题目主要考查分数指数幂的运算及同底数幂的乘法和同底数幂的除法,熟练掌握各运算法则是解题关键.
【真题汇总卷】2022年北京市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解): 这是一份【真题汇总卷】2022年北京市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共18页。试卷主要包含了下列图形是中心对称图形的是.,已知4个数,如图,在中,,,则的值为,如图,点C等内容,欢迎下载使用。
【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解): 这是一份【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了若,则的值是,如图,在中,,,则的值为,下列式中,与是同类二次根式的是,下列命题中,真命题是等内容,欢迎下载使用。
【真题汇编】2022年北京市平谷区中考数学备考真题模拟测评 卷(Ⅰ)(含详解): 这是一份【真题汇编】2022年北京市平谷区中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共20页。试卷主要包含了下列图形中,是中心对称图形的是,下列判断错误的是,二次函数 y=ax2+bx+c等内容,欢迎下载使用。