![【难点解析】2022年重庆市沙坪坝区中考数学第三次模拟试题(含答案解析)第1页](http://m.enxinlong.com/img-preview/2/3/12676979/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年重庆市沙坪坝区中考数学第三次模拟试题(含答案解析)第2页](http://m.enxinlong.com/img-preview/2/3/12676979/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年重庆市沙坪坝区中考数学第三次模拟试题(含答案解析)第3页](http://m.enxinlong.com/img-preview/2/3/12676979/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【难点解析】2022年重庆市沙坪坝区中考数学第三次模拟试题(含答案解析)
展开
这是一份【难点解析】2022年重庆市沙坪坝区中考数学第三次模拟试题(含答案解析),共25页。试卷主要包含了下列说法正确的是,下列运算中,正确的是等内容,欢迎下载使用。
2022年重庆市沙坪坝区中考数学第三次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )A.① B.② C.③ D.②③2、有理数、、、在数轴上对应的点的位置如图所示,则下列结论错误的是( )A. B. C. D.3、下列关于x的二次三项式在实数范围内不能够因式分解的是( )A.x2﹣3x+2 B.2x2﹣2x+1 C.2x2﹣xy﹣y2 D.x2+3xy+y24、如图,二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),点B(m,0),点C(0,﹣m),其中2<m<3,下列结论:①2a+b>0,②2a+c<0,③方程ax2+bx+c=﹣m有两个不相等的实数根,④不等式ax2+(b﹣1)x<0的解集为0<x<m,其中正确结论的个数为( )A.1 B.2 C.3 D.45、下列说法正确的是( )A.任何数的绝对值都是正数 B.如果两个数不等,那么这两个数的绝对值也不相等C.任何一个数的绝对值都不是负数 D.只有负数的绝对值是它的相反数6、地球赤道的周长是40210000米,将40210000用科学记数法表示应为( )A. B. C. D.7、下列运算中,正确的是( )A.=﹣6 B.﹣=5 C.=4 D.=±88、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )A. B. C. D.9、如图,点是以点为圆心,为直径的半圆上的动点(点不与点,重合),.设弦的长为,的面积为,则下列图象中,能表示与的函数关系的图象大致是( )A. B. C. D.10、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接,再作出的垂直平分线,交于点C,交于点D,测出的长度,即可计算得出轮子的半径.现测出,则轮子的半径为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知某函数的图象经过,两点,下面有四个推断:①若此函数的图象为直线,则此函数的图象与直线平行;②若此函数的图象为双曲线,则也在此函数的图象上;③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y轴的负半轴相交;④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线左侧.所有合理推断的序号是______.2、若a<<a+1,则整数a=___.3、已知p、q是实数,有且只有三个不同的x值满足方程|x2+px+q|=2,则q的最小值 ___.4、如图是某手机店今年8月至12月份手机销售额统计图,根据图中信息,可以判断该店手机销售额变化最大的相邻两个月是________(填月份).5、如图,晚上小亮在路灯下散步,在由A点处走到B点处这一过程中,他在点A,B,C三处对应的在地上的影子,其中影子最短的是在 _____点处(填A,B,C).三、解答题(5小题,每小题10分,共计50分)1、如图,AB为⊙O的直径,C、D为圆上两点,连接AC、CD,且AC=CD,延长DC与BA的延长线相交于E点.(1)求证:△EAC∽△ECO;(2)若,求的值.2、已知:二次函数y=x2﹣1.(1)写出此函数图象的开口方向、对称轴、顶点坐标;(2)画出它的图象.3、计算:4、定义:如图①.如果点D在的边上且满足.那么称点D为的“理根点”,如图②,在中,,如果点D是的“理想点”,连接.求的长.5、已知二次函数的图象经过两点.(1)求a和b的值;(2)在坐标系中画出该二次函数的图象. -参考答案-一、单选题1、B【分析】把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.【详解】解:∵点M(a,b)在抛物线y=x(2-x)上, 当b=-3时,-3=a(2-a),整理得a2-2a-3=0,∵△=4-4×(-3)>0,∴有两个不相等的值,∴点M的个数为2,故①错误;当b=1时,1=a(2-a),整理得a2-2a+1=0,∵△=4-4×1=0,∴a有两个相同的值,∴点M的个数为1,故②正确;当b=3时,3=a(2-a),整理得a2-2a+3=0,∵△=4-4×3<0,∴点M的个数为0,故③错误;故选:B.【点睛】本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.2、C【分析】根据有理数a,b,c,d在数轴上对应的点的位置,逐个进行判断即可.【详解】解:由有理数a,b,c,d在数轴上对应的点的位置可得,-4<d<-3<-1<c<0<1<b<2<3<a<4,∴,,,,故选:C.【点睛】本题考查数轴表示数的意义,根据点在数轴上的位置,确定该数的符号和绝对值是正确判断的前提.3、B【分析】利用十字乘法把选项A,C分解因式,可判断A,C,利用一元二次方程根的判别式计算的值,从而可判断B,D,从而可得答案.【详解】解: 故A不符合题意;令 所以在实数范围内不能够因式分解,故B符合题意; 故C不符合题意;令 所以在实数范围内能够因式分解,故D不符合题意;故选B【点睛】本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.4、C【分析】利用二次函数的对称轴方程可判断①,结合二次函数过 可判断②,由与有两个交点,可判断③,由过原点,对称轴为 求解函数与轴的另一个交点的横坐标,结合原二次函数的对称轴及与轴的交点坐标,可判断④,从而可得答案.【详解】解: 二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),点B(m,0), 抛物线的对称轴为: 2<m<3,则 而图象开口向上 即 故①符合题意; 二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0), 则 则 故②符合题意; 与有两个交点, 方程ax2+bx+c=﹣m有两个不相等的实数根,故③符合题意;关于对称, 过原点,对称轴为 该函数与抛物线的另一个交点的横坐标为: 不等式ax2+(b﹣1)x<0的解集不是0<x<m,故④不符合题意;综上:符合题意的有①②③故选:C【点睛】本题考查的是二次函数的图象与性质,利用二次函数的图象判断及代数式的符号,二次函数与一元二次方程,不等式之间的关系,熟练的运用数形结合是解本题的关键.5、C【分析】数轴上表示数的点与原点的距离是数的绝对值,非负数的绝对值是它的本身,非正数的绝对值是它的相反数,互为相反数的两个数的绝对值相等,再逐一分析各选项即可得到答案.【详解】解:任何数的绝对值都是非负数,故A不符合题意;如果两个数不等,那么这两个数的绝对值可能相等,也可能不相等,比方 但 故B不符合题意;任何一个数的绝对值都不是负数,表述正确,故C符合题意;非正数的绝对值是它的相反数,故D不符合题意;故选C【点睛】本题考查的是绝对值的含义,求解一个数的绝对值,掌握“绝对值的含义”是解本题的关键.6、A【分析】科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以【详解】解:40210000 故选:A【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.7、C【分析】根据算术平方根的意义逐项化简即可.【详解】解:A.无意义,故不正确;B.﹣=-5,故不正确;C.=4,正确;D.=8,故不正确;故选C.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.8、B【分析】先求出,再根据中点求出,即可求出的长.【详解】解:∵,∴,,∵点是线段的中点,∴,,故选:B.【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.9、B【分析】由AB为圆的直径,得到∠C=90°,在Rt△ABC中,由勾股定理得到,进而列出△ABC面积的表达式即可求解.【详解】解:∵AB为圆的直径,∴∠C=90°,,,由勾股定理可知:∴,∴此函数不是二次函数,也不是一次函数,排除选项A和选项C,为定值,当时,面积最大,此时,即时,最大,故排除,选.故选:.【点睛】本题考查了动点问题的函数图象,根据题意列出函数表达式是解决问题的关键.10、C【分析】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.【详解】解:设圆心为O,连接OB.Rt△OBC中,BC=AB=20cm,根据勾股定理得:OC2+BC2=OB2,即:(OB-10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.二、填空题1、①②④【分析】分别根据过A、B两点的函数是一次函数、二次函数时,相应的函数的性质进行判断即可.【详解】解:①过,两点的直线的关系式为y=kx+b,则,解得,所以直线的关系式为y=x-1,直线y=x-1与直线y=x平行,因此①正确;②过,两点的双曲线的关系式为,则,所以双曲线的关系式为当时, ∴也在此函数的图象上,故②正确;③若过,两点的抛物线的关系式为y=ax2+bx+c,当它经过原点时,则有 解得, 对称轴x=-,∴当对称轴0<x=-<时,抛物线与y轴的交点在正半轴,当->时,抛物线与y轴的交点在负半轴,因此③说法不正确;④当抛物线开口向上时,有a>0,而a+b=1,即b=-a+1,所以对称轴x=-=-=-,因此函数图象对称轴在直线x=左侧,故④正确,综上所述,正确的有①②④,故答案为:①②④.【点睛】本题考查一次函数、二次函数的图象和性质,待定系数法求函数的关系式,理解各种函数的图象和性质是正确判断的前提.2、3【分析】估算出的取值范围即可求出a的值.【详解】解:∵,∴3<<4,∵a<<a+1,∴a=3,故答案为:3.【点睛】此题主要考查了估算无理数的大小,在确定形如(a≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.3、-2【分析】根据题意由方程|x2+px+q|=2得到x2+px+q-2=0,x2+px+q+2=0,根据判别式得到Δ1=p2-4q+8,Δ2=p2-4q-8,依此可Δ2=0,Δ1=16,可得p2-4q-8=0,依此可求q的最小值.【详解】解:∵|x2+px+q|=2,∴x2+px+q-2=0①,x2+px+q+2=0②,∴Δ1=p2-4q+8,Δ2=p2-4q-8,∴Δ1>Δ2,∵有且只有三个不同的x值满足方程|x2+px+q|=2,∴Δ2=0,Δ1=16,∴p2-4q-8=0,∴q=p2-2,当p=0时,q的最小值-2.故答案为:-2.【点睛】本题考查一元二次方程的解以及根的判别式,根据题意由根的判别式得到p2-4q-8=0是解题的关键.4、【分析】计算出相邻两个月销售额的变化,然后比较其绝对值的大小.【详解】解:根据图中的信息可得,相邻两个月销售额的变化分别为:、、、,∵,∴该店手机销售额变化最大的相邻两个月是,故答案为:【点睛】此题考查了有理数减法的应用以及有理数大小的比较,解题的关键是掌握有理数减法运算法则以及有理数大小比较规则.5、C【分析】如图所示,、 、分别为点A,B,C三处对应的在地上的影子,通过三角形相似,比较长度的大小,进而求得影子最短的值的点.【详解】解:如图、、分别为点A,B,C三处对应的在地上的影子由三角形相似可得,值最小值最小由题意可知,离路灯越近,影子越短故答案为:C.【点睛】本题考查了相似三角形.解题的关键是建立比较长度的关系式.三、解答题1、(1)见解析(2)【分析】(1)由题意可证得△AOC≌△DOC,从而可得对应边、对应角都相等,再由△ECO、△EDO的内角和定理,可证得,从而可得△EAC∽△ECO;(2)过点C作CF⊥EO,由,可设CF=3x,则可得OF=4x,OC=5x=OA,故可得AF=x,可求AC=x,,从而可得,即为的值.(1)证明:∵AB为⊙O的直径,C、D为圆上两点,连接AC、CD,且AC=CD,∴在△CAO与△CDO中:∴△CAO≌△CDO,∴,在△ECO与△EDO中,,,∴,在△EAC与△ECO中,,,∴△EAC∽△ECO.(2)解:过点C作CF⊥EO,∵,∴,设CF=3x,则OF=4x,∴OC==OA,∴AF=5x-4x= x,∴AC=,∴,由(1)得△EAC∽△ECO,∴,∴.【点睛】本题考查了三角形相似的判定及性质,三角函数的应用,解题的关键是作出辅助线,利用好数形结合的思想.2、(1)抛物线的开口方向向上,对称轴为y轴,顶点坐标为(0,﹣1).(2)图像见解析.【分析】(1)根据二次函数y=a(x-h)2+k,当a>0时开口向上;顶点式可直接求得其顶点坐标为(h,k)及对称轴x=h;(2)可分别求得抛物线顶点坐标以及抛物线与x轴、y轴的交点坐标,利用描点法可画出函数图象.(1)解:(1)∵二次函数y=x2﹣1,∴抛物线的开口方向向上,顶点坐标为(0,﹣1),对称轴为y轴;(2)解:在y=x2﹣1中,令y=0可得x2﹣1=0.解得x=﹣1或1,所以抛物线与x轴的交点坐标为(-1,0)和(1,0);令x=0可得y=﹣1,所以抛物线与y轴的交点坐标为(0,-1);又∵顶点坐标为(0,﹣1),对称轴为y轴,再求出关于对称轴对称的两个点,将上述点列表如下:x-2-1012y=x2﹣130-103描点可画出其图象如图所示:【点睛】本题考察了二次函数的开口方向、对称轴以及顶点坐标.以及二次函数抛物线的画法.解题的关键是把二次函数的一般式化为顶点式.描点画图的时候找到关键的几个点,如:与x轴的交点与y轴的交点以及顶点的坐标.3、【分析】先将二次根式化简,再去括号、合并即可.【详解】解:【点睛】本题主要考查了二次根式的加减运算,注意二次根式的加减法实质是合并同类二次根式.4、.【分析】只要证明CD⊥AB即可解决问题.【详解】解:如图②中,∵点D是△ABC的“理想点”,∴∠ACD=∠B,∵,∴,∴, ,在Rt△ABC中,,∴BC= ,∵,.【点睛】本解考查了直角三角形判定和性质,理解新定义是解本题的关键.5、(1)(2)见解析【分析】(1)利用待定系数法将两点代入抛物线求解即可得;(2)根据(1)中结论确定函数解析式,求出与x,y轴的交点坐标及对称轴,然后用光滑的曲线连接即可得函数图象.(1)解:∵二次函数的图象经过两点,∴, 解得: .(2)解:由(1)可得:函数解析式为:,当时,,解得:,,∴抛物线与x轴的交点坐标为:,,抛物线与y轴的交点坐标为:,对称轴为:,根据这些点及对称轴在直角坐标系中作图如下.【点睛】题目主要考查待定系数法确定函数解析式及作函数图象,熟练掌握待定系数法确定函数解析式是解题关键.
相关试卷
这是一份2022年重庆市沙坪坝区中考数学适应性试卷(含答案解析),共22页。试卷主要包含了5×103C,【答案】B,【答案】D,【答案】C等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年重庆市沙坪坝区中考数学第二次模拟试题(含答案解析),共21页。试卷主要包含了的值.等内容,欢迎下载使用。
这是一份【难点解析】2022年重庆市渝中区中考数学第三次模拟试题(含答案解析),共27页。试卷主要包含了已知,则的值为等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)