【难点解析】2022年北京市平谷区中考数学备考模拟练习 (B)卷(含答案解析)
展开
这是一份【难点解析】2022年北京市平谷区中考数学备考模拟练习 (B)卷(含答案解析),共23页。试卷主要包含了在以下实数中等内容,欢迎下载使用。
2022年北京市平谷区中考数学备考模拟练习 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列判断错误的是( )A.若,则 B.若,则C.若,则 D.若,则2、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是( )A.63° B.58° C.54° D.56°3、抛物线的顶点坐标是( )A. B. C. D.4、深圳湾“春笋”大楼的顶部如图所示,则该几何体的主视图是( )A. B. C. D.5、在以下实数中:-0.2020020002…,,,,,,无理数的个数是( )A.2个 B.3个 C.4个 D.5个6、二次函数()的图象如图,给出下列四个结论:①;②;③;④对于任意不等于-1的m的值一定成立.其中结论正确的个数是( )A.1 B.2 C.3 D.47、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )A.9 B.10 C.12 D.148、若数a使关于x的方程=的解为非负数,使关于y的不等式组无解,则所有满足条件的整数a的值之和为( )A.7 B.12 C.14 D.189、将,2,,3按如图的方式排列,规定表示第m排左起第n个数,则与表示的两个数之积是( )A. B.4 C. D.610、已知4个数:,,,,其中正数的个数有( )A.1 B. C.3 D.4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一副直角三角板叠放在一起,使直角顶点重合于点,若∠COB=50°,则∠AOD=_______2、如图,点C是线段AB的中点,点D在线段AB上,且AD=AB,DC=2cm,那么线段AB的长为________cm.3、如图,,若,平分,则的度数是_____.4、已知x为不等式组的解,则的值为______.5、如图,在半径为5的⊙O中,弦AB=6,OC⊥AB于点D,交⊙O于点C,则CD=_____.三、解答题(5小题,每小题10分,共计50分)1、观察以下等式:,,,,(1)依此规律进行下去,第5个等式为______,猜想第n个等式为______;(2)请利用分式的运算证明你的猜想.2、如图,中,,于D,点E在AD上,且.(1)求证:≌;(2)判断直线BE和AC的位置关系,并说明理由.3、如图△ABC中,∠B=60°,∠BAC与∠ACB的角平分线AD、CE交于O.求证:AC=AE+DC.4、 “疫情未结束,防疫绝不放松”.为了了解同学们掌握防疫知识的情况,增强防疫意识,某校开展了“全民行动•共同抗疫”的自我防护知识网上答题竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是94,90,94七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级9290c52八年级92b10050.4八年抽取的学生竞赛成绩扇形统计图根据以上信息,解答下列问题:(1)上述图表中a= ,b= ,c= ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握自我防护知较好?请说明理由(一条理由即可);(3)该校七、八年级共640人参加了此次网上答题竞赛活动,估计参加竞赛活动成绩优秀(x≥90)的学生人数是多少?5、某电影院某日某场电影的购票方式有两种,①个人票;成人票每张30元,学生票每张15元:②团体票:按个人票价的9折出售(满40人可购团体票,不足40人可按40人计算).某班在4位老师带领下去该电影院看该场电影,学生人数为x人(1)若按个人票购买,该班师生买票共付费_____元(用含x的代数式表示);若按团体票购买,该班师生买票共付费_____元(用含x的代数式表示,且x≥36)(2)如果该班学生人32人,该班师生买票最少可付费多少元? -参考答案-一、单选题1、D【分析】根据等式的性质解答.【详解】解:A. 若,则,故该项不符合题意; B. 若,则,故该项不符合题意;C. 若,则,故该项不符合题意; D. 若,则(),故该项符合题意;故选:D.【点睛】此题考查了等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.2、C【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.故选:C.【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.3、A【分析】根据二次函数y=a(x-h)2+k的性质解答即可.【详解】解:抛物线的顶点坐标是,故选A.【点睛】本题考查了二次函数y=a(x-h)2+k(a,h,k为常数,a≠0)的性质,熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键. y=a(x-h)2+k是抛物线的顶点式,a决定抛物线的形状和开口方向,其顶点是(h,k),对称轴是x=h.4、A【分析】根据简单几何体的三视图的意义,得出从正面看所得到的图形即可.【详解】解:从正面看深圳湾“春笋”大楼所得到的图形如下:故选:A.【点睛】本题考查简单几何体的三视图,理解视图的意义,掌握简单几何体三视图的画法是正确解答的关键.5、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.据此解答即可.【详解】解:无理数有-0.2020020002…,,,,共有4个.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…,等有这样规律的数.解题的关键是理解无理数的定义.6、C【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0,可判断①;根据对称轴是x=﹣1,可得x=﹣2、0时,y的值相等,所以4a﹣2b+c>0,可判断③;根据1,得出b=2a,再根据a+b+c<0,可得b+b+c<0,所以3b+2c<0,可判断②;x=﹣1时该二次函数取得最大值,据此可判断④.【详解】解:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵1,∴b=2a,∵a+b+c<0,∴b+b+c<0,∴3b+2c<0,∴②正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正确∴正确的有①②④三个,故选:C.【点睛】本题考查二次函数图象与系数的关系,看懂图象,利用数形结合解题是关键.7、C【分析】过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.【详解】解:过点F作MN⊥AD于点M,交BC于点N,连接BD,∵四边形ABCD是平行四边形,∴AD//BC,AD=BC∴△AFE∽△CFB∴ ∵DE=2AE∴AD=3AE=BC∴ ∴,即 又 ∴∴ 故选:C【点睛】本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.8、C【分析】第一步:先用a的代数式表示分式方程的解.再根据方程的解为非负数,x-3≠0,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m的取值范围进行综合考虑确定最后m的取值范围,最后根据a为整数确定最后结果.【详解】解:,2a-8=x-3,x=2a-5,∵方程的解为非负数,x-3≠0,∴,解得a≥且a≠4,,解不等式组得:,∵不等式组无解,∴5-2a≥-7,解得a≤6,∴a的取值范围:≤a≤6且a≠4,∴满足条件的整数a的值为3、5、6,∴3+5+6=14,故选:C.【点睛】本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m的取值范围是解题关键.9、A【分析】根据数的排列方法可知,第一排1个数,第二排2个数,第三排3个数,第四排4个数,…第(m-1)排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第m个数后再计算【详解】解:(5,4)表示第5排从左向右第4个数,由图可知,(5,4)所表示的数是2;是第21排第7个数,则前20排有个数,则是第个数,,2,,3四个数循环出现,表示的数是与表示的两个数之积是故选A【点睛】本题考查了数字的变化规律,判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.10、C【分析】化简后根据正数的定义判断即可.【详解】解:=1是正数,=2是正数,=1.5是正数,=-9是负数,故选C.【点睛】本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.二、填空题1、130°130度【分析】先计算出,再根据可求出结论.【详解】解:∵, ∴ ∵ ∴ 故答案为:130°【点睛】本题考查了角的计算及余角的计算,熟悉图形是解题的关键.2、6【分析】设AD=xcm,则AB=3xcm,根据线段中点定义求出cm,列得,求出x即可得到答案.【详解】解:设AD=xcm,则AB=3xcm,∵点C是线段AB的中点,∴cm,∵DC=2cm,∴,得x=2,∴AB=3xcm=6cm,故答案为:6.【点睛】此题考查了线段中点的定义,列一元一次方程解决几何图形问题,正确设出AD=xcm,则AB=3xcm,由此列出方程是解题的关键.3、【分析】先求解 利用角平分线再求解 由可得答案.【详解】解: ,, 平分, 故答案为:【点睛】本题考查的是垂直的定义,角平分线的定义,角的和差运算, 熟练的运用“角的和差关系与角平分线的定义”是解本题的关键.4、2【分析】解不等式组得到x的范围,再根据绝对值的性质化简.【详解】解:,解不等式①得:,解不等式②得:,∴不等式组的解集为:,∴===2故答案为:2.【点睛】本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x的范围.5、【分析】连接OA,先利用垂径定理得出AD的长,再由勾股定理得出OD的长即可解答.【详解】解:连接OA, ∵AB=6,OC⊥AB于点D, ∴AD=AB=×6=3, ∵⊙O的半径为5, ∴, ∴CD=OC-OD=5-4=1. 故答案为:1.【点睛】本题考查的是垂径定理及勾股定理,解答此题的关键是作出辅助线构造出直角三角形,再利用勾股定理求解.三、解答题1、(1),(2)见解析【分析】(1)根据题目中给出的等式,即可写出第5个等式,并写出第的等式;(2)根据分式的乘法和加法可以证明猜想的正确性.(1)解:由题目中的等式可得,第5个等式为:,第个等式是,故答案为:,;(2)证明:左边,右边,左边右边,故猜想正确.【点睛】本题考查分式的混合运算、数字的变化类,解答本题的关键是明确题意,写出相应的等式,并证明猜想的正确性.2、(1)见详解;(2)BE⊥AC;理由见详解.【分析】(1)先得到AD=BD,,然后利用HL即可证明≌;(2)延长BE,交AC于点F,由(1)可知,然后得到,即可得到结论成立.(1)解:∵于D,∴,∵,∴,∴,∵,∴≌(HL);(2)解:BE⊥AC;理由如下:延长BE,交AC于点F,如图:由(1)可知,≌,∴,∵,∴,∴BE⊥AC;【点睛】本题考查了全等三角形的判定和性质,余角的性质,等腰三角形的判定和性质,解题的关键是掌握所学的知识,正确的找出全等的条件.3、见解析【分析】在AC上截取CF=CD,由角平分线的性质和三角形内角和定理可求∠AOC=120°,∠DOC=∠AOE=60°,由“SAS”可证△CDO≌△CFO,可得∠COF=∠COD=60°,由“ASA”可证△AOF≌△AOE,可得AE=AF,即可得结论.【详解】解:证明:如图,在AC上截取CF=CD,∵∠B=60°,∴∠BAC+∠BCA=120°,∵∠BAC、∠BCA的角平分线AD、CE相交于O,∴∠BAD=∠OAC=∠BAC,∠DCE=∠OCA=∠BCA,∴∠OAC+∠OCA=(∠BAC+∠BCA)=60°,∴∠AOC=120°,∠DOC=∠AOE=60°,∵CD=CF,∠OCA=∠DCO,CO=CO,∴△CDO≌△CFO(SAS),∴∠COF=∠COD=60°,∴∠AOF=∠EOA=60°,且AO=AO,∠BAD=∠DAC,∴△AOF≌△AOE(ASA),∴AE=AF,∴AC=AF+FC=AE+CD.【点睛】本题考查了全等三角形的判定与性质,添加恰当辅助线构造全等三角形是本题的关键.4、(1)a=40,b=94,c=90和96(2)八年级,理由见解析(3)416人【分析】(1)根据频率=频数÷总数,中位数、众数的计算方法进行计算即可;(2)比较方差的大小得出答案;(3)求出七、八年级优秀人数所占的百分比即可.【小题1】解:八年级10名学生的竞赛成绩在C组中的数据是:94,94,90,∴C组所占的百分比为3÷10×100%=30%,∵1-10%-20%-30%=40%,即a=40,八年级A组的有2人,B组的有1人,C组有3人,D组的有4人,将这10人的成绩从小到大排列,处在中间位置的两个数都是94,因此中位数是94,即b=94,七年级10名学生成绩出现次数最多的是90和96,因此众数是90和96,即c=90和96,故答案为:40,94,90和96;【小题2】八年级学生掌握自我防护知较好,理由:∵七年级的方差为52,八年级的方差是50.4,而52>50.4,∴八年级学生的成绩较为稳定,∴八年级学生掌握自我防护知较好;【小题3】640×=416(人),答:参加竞赛活动成绩优秀(x≥90)的学生人数是416人.【点睛】本题考查中位数、众数、平均数、方差以及样本估计总体,掌握平均数、中位数、众数以及方差的计算方法是正确解答的关键.5、(1),;(2)594元【分析】(1)若按个人票购买,则费用为元;若按团体票购买,该班师生买票共付费元;(2)按学生32人购票,则可购买团体票,此时费用最小.【详解】解:(1),所以若按个人票购买,该班师生买票共付费元;,所以若按团体票购买,该班师生买票共付费元;故答案为:;;(2)当按个人票购买时,元,当按团体票购买时,,所以该班师生买票最少可付费594元.【点睛】本题考查了代数式求值,解题的关键是列出代数式,根据求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.
相关试卷
这是一份【真题汇总卷】2022年北京市平谷区中考数学备考模拟练习 (B)卷(精选),共20页。试卷主要包含了下列命题正确的是等内容,欢迎下载使用。
这是一份【难点解析】最新中考数学备考模拟练习 (B)卷(精选),共32页。试卷主要包含了下列各组图形中一定是相似形的是,下列各对数中,相等的一对数是,一组样本数据为1,下列二次根式的运算正确的是等内容,欢迎下载使用。
这是一份【难点解析】2022年北京市平谷区中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共19页。试卷主要包含了下列命题正确的是,下列计算正确的是,点P,已知和是同类项,那么的值是等内容,欢迎下载使用。