2021学年第四章 一元一次不等式和一元一次不等式组综合与测试随堂练习题
展开
这是一份2021学年第四章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共20页。试卷主要包含了下列变形中,错误的是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、由x>y得ax<ay的条件应是( )A.a>0 B.a<0 C.a≥0 D.b≤02、不等式2x﹣1<3的解集在数轴上表示为( )A. B.C. D.3、把不等式组的解集在数轴上表示,正确的是( )A. B.C. D.4、不等式的整数解是1,2,3,4.则实数a的取值范围是( )A. B. C. D.5、把不等式的解集在数轴上表示正确的是( )A. B.C. D.6、在数轴上表示不等式组﹣1<x≤3,正确的是( )A. B.C. D.7、若整数a使得关于x的方程的解为非负数,且使得关于y的一元一次不等式组至少有3个整数解.则所有符合条件的整数a的和为( )A.23 B.25 C.27 D.288、下列变形中,错误的是( )A.若3a+5>2,则3a>2-5 B.若,则C.若,则x>﹣5 D.若,则9、已知关于的不等式组的整数解共有个,则的取值范围是( )A. B. C. D.10、若关于x的分式方程+1=有整数解,且关于y的不等式组恰有2个整数解,则所有满足条件的整数a的值之积是( )A.0 B.24 C.﹣72 D.12第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若m与3的和是正数,则可列出不等式:___.2、 “x的2倍比y小”用不等式表示为 _______.3、关于的不等式的解集是,则关于的不等式的解集是___ .4、根据“3x与5的和是负数”可列出不等式 _________.5、如果不等式(b+1)x<b+1的解集是x>1,那么b的范围是 ___.三、解答题(5小题,每小题10分,共计50分)1、解不等式,并将解集在数轴上表示;2、解下列不等式组,并将其解集在数轴上表示出来.(1);(2)1<3x-2<4;3、解不等式:(1)2x+3>6﹣x;(2).4、解下列不等式(组):(1)(2)5、有一批产品需要生产装箱,3台A型机器一天刚好可以生产6箱产品,而4台B型机器一天可以生产5箱还多20件产品.已知每台A型机器比每台B型机器一天多生产40件.(1)求每箱装多少件产品?(2)现需生产28箱产品,若用1台A型机器和2台B型机器生产,需几天完成?(3)若每台A型机器一天的租赁费用是240元,每台B型机器一天的租赁费用是170元,可供租赁的A型机器共3台,B型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算). ---------参考答案-----------一、单选题1、B【解析】【分析】由不等式的两边都乘以 而不等号的方向发生了改变,从而可得.【详解】解: 故选B【点睛】本题考查的是不等式的性质,掌握“不等式的两边都乘以同一个负数,不等号的方向改变”是解本题的关键.2、D【解析】【分析】先解出一元一次不等式的解集,再根据不等式解集的表示方法做出判断即可.【详解】解:由2x﹣1<3得:x<2,则不等式2x﹣1<3的解集在数轴上表示为,故选:D.【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握在数轴上表示不等式的解集的方法是解答的关键.3、D【解析】【分析】先求出不等式组的解集,再把不等式组的解集在数轴上表示出来,即可求解.【详解】解:,解不等式②,得: ,所以不等式组的解集为 把不等式组的解集在数轴上表示出来为:故选:D【点睛】本题主要考查了解一元一次不等组,熟练掌握解一元一次不等组的步骤是解题的关键.4、A【解析】【分析】先确定 再分析不符合题意,确定 再解不等式,结合不等式的整数解可得:,从而可得答案.【详解】解: 显然: 当时,不等式的解集为:,不等式没有正整数解,不符合题意,当时,不等式的解集为: 不等式的整数解是1,2,3,4, 由①得: 由②得: 所以不等式组的解集为:故选A【点睛】本题考查的是根据不等式的整数解确定参数的取值范围,掌握“解不等式时,不等式的左右两边都乘以或除以同一个负数时,不等号的方向改变”是解题的关键.5、D【解析】【分析】解一元一次不等式求出不等式的解集,由此即可得出答案.【详解】解:不等式的解集为,在数轴上的表示如下:故选:D.【点睛】本题考查了将一元一次不等式的解集在数轴上表示出来,熟练掌握不等式的解法是解题关键.6、C【解析】【分析】把不等式组的解集在数轴上表示出来即可.【详解】解:,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示不等式的解集,解题的关键是熟知“小于向左,大于向右”的法则.7、B【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:,解不等式①得:,解不等式②得:∴不等式组的解集为:,∵由不等式组至少有3个整数解, ∴,即整数a=2,3,4,5,…,∵,∴解得:,∵方程的解为非负数,∴,∴∴得到符合条件的整数a为3,4,5,6,7,之和为25.故选B.【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.8、B【解析】【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A、不等式的两边都减5,不等号的方向不变,故A不符合题意;B、不等式的两边都乘以,不等号的方向改变得到,故B符合题意;C、不等式的两边都乘以(﹣5),不等号的方向改变,故C不符合题意;D、不等式的两边都乘以同一个正数,不等号的方向不变,故D不符合题意;故选:B.【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.9、A【解析】【分析】先分别求出每个不等式的解集,然后确定不等式组的解集,最后根据整数解的个数确定的范围.【详解】解:解不等式①得:x,解不等式②得:x<,∴不等式组的解集是<x<,∵原不等式组的整数解有3个为1,0,-1,∴-2≤<-1.故选择:A.【点睛】本题考查了解一元一次不等式、解一元一次不等式组、不等式组的整数解的应用,确定不等式组的解集是解答本题的关键.10、D【解析】【分析】根据分式方程的解为正数即可得出a=﹣1或﹣3或﹣4或2或﹣6,根据不等式组有解,即可得出﹣1+≤y<,找出﹣3<﹣1+≤﹣2中所有的整数,将其相乘即可得出结论.【详解】先解分式方程,再解一元一次不等式组,进而确定a的取值.解:∵+1=,∴x+x﹣2=2﹣ax.∴2x+ax=2+2.∴(2+a)x=4.∴x= .∵关于x的分式方程+1=有整数解,∴2+a=±1或±2或±4且≠2.∴a=﹣1或﹣3或﹣4或2或﹣6.∵2(y﹣1)+a﹣1≤5y,∴2y﹣2+a﹣1≤5y.∴2y﹣5y≤1﹣a+2.∴﹣3y≤3﹣a.∴y≥﹣1+.∵2y+1<0,∴2y<﹣1.∴y<.∴﹣1+≤y<.∵关于y的不等式组恰有2个整数解,∴﹣3<﹣1+≤﹣2.∴﹣6<a≤﹣3.又∵a=﹣1或﹣3或﹣4或2或﹣6,∴a=﹣3或﹣4.∴所有满足条件的整数a的值之积是﹣3×(﹣4)=12.故选:D.【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出﹣3<﹣1+≤﹣2是解题的关键.二、填空题1、【解析】【分析】根据题意列出不等式即可【详解】若m与3的和是正数,则可列出不等式故答案为:【点睛】本题考查了一元一次不等式的应用,理解题意是解题的关键.2、2x<y##y>2x【解析】【分析】x的2倍即为2x,小即“<”,据此列不等式.【详解】解:由题意得,2x<y.故答案为:2x<y.【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系是关键.3、x<##x<0.25【解析】【分析】根据不等(2a−b)x+a−5b>0的解集是x<1,可得a与b的关系,根据解不等式的步骤,可得答案.【详解】解;不等式(2a−b)x+a−5b>0的解集是x<1,∴2a−b<0,2a−b=5b−a,a=2b,b<0,2ax−b>04bx−b>04bx>bx<,故答案为:x<.【点睛】本题考查了不等式的解集,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.4、【解析】【分析】3x与5的和为,和是负数即和小于0,列出不等式即可得出答案.【详解】3x与5的和是负数表示为.故答案为:.【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键.5、b<-1【解析】【分析】根据不等式的基本性质3可知b+1<0,解之可得答案.【详解】解:∵(b+1)x<b+1的解集是x>1,∴b+1<0,解得b<-1,故答案为:b<-1.【点睛】本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质3:不等式两边同时乘以或除以同一个负数,不等号的方向改变.三、解答题1、,数轴表示见解析【解析】【分析】先去分母,然后再求解一元一次不等式即可.【详解】解:去分母得:,去括号得:,移项、合并同类项得:,系数化为1得:;数轴表示如下:【点睛】本题主要考查一元一次不等式的解法,熟练掌握一元一次不等式的解法是解题的关键.2、(1)无解,数轴见解析;(2)1<x<2,数轴见解析【解析】【分析】根据解不等式组的步骤,先求出每个不等式的解集,然后根据口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”求出不等式组的解集,表示在数轴上即可.【详解】解:(1)由①得解集为x≥3,由②得解集为x<3,在数轴上表示①、②的解集,如图,所以不等式组无解.(2)原式整理为,解不等式①得:,解不等式②得:,∴不等式组的解集为1<x<2,表示在数轴上如图:【点睛】本题考查了求不等式组的解集,熟练掌握求不等组的方法是解本题的关键.3、(1)x>1;(2)﹣6≤x<2【解析】【分析】(1)把不等式移项,合并同类项,然后系数化1即可;(2)先把不等式组标号,解每个不等式,求每个不等式解集的公共部分即可.【详解】解:(1)2x+3>6﹣x,移项得:2x+x>6﹣3,合并得:3x>3,系数化1得x>1;(2),解不等式①得:x≥﹣6,解不等式②得:x<2,不等式组的解集为:﹣6≤x<2.【点睛】本题考查一元一次不等式,与一元一次不等式组的解法,掌握一元一次不等式的解法与步骤,不等式组的解法是解题关键.4、(1)x<;(2)1≤x<3【解析】【分析】(1)去括号,移项合并,系数化为1即可求解;(2)分别求出各不等式的解集,再求出其公共解集即可.【详解】解:(1)去括号得,x-1>6x+18,移项合并同类项得:5x<-19,系数化为1得:x<;(2),由①得,x≥1,由②得,x<3,故不等式组的解集为:1≤x<3.【点睛】本题考查了解一元一次不等式,以及一元一次不等式组,熟练掌握求不等式解集的步骤是解答此题的关键.5、(1)60件;(2)6天;(3)A型机器前2天租3台,第3天租2台;B型机器每天租3台【解析】【分析】(1)设每箱装x件产品,根据“每台A型机器比每台B型机器一天多生产40件”列出方程求解即可;(2)根据第(1)问的答案可求得每台A型机器每天生产120件,每台B型机器每天生产80件,根据工作时间=工作总量÷工作效率即可求得答案;(3)先将原问题转化为“若3天共有9台次A型机器,12台次B型机器可用,求这3天完成28箱(1680件产品)所需的最省费用”,再设租A型机器a台次,则租B型机器的台次数为台次,由此可求得a的取值范围,进而可求得符合题意的a的整数解,再分别求得对应的总费用,比较大小即可.【详解】解:(1)设每箱装x件产品,根据题意可得:,解得:,答:每箱装60件产品;(2)由(1)得:每台A型机器每天生产(件),每台B型机器每天生产(件),∴(天),答:若用1台A型机器和2台B型机器生产,需6天完成;(3)根据题意可把问题转化为:若3天共有9台次A型机器,12台次B型机器可用,求这3天完成28箱(1680件产品)所需的最省费用.设租A型机器a台次,则租B型机器的台数为台次,∵共有12台次B型机器可用,∴,解得a≥6,∵共有9台次A型机器可用,∴a≤9,∴6≤9≤9,又∵a为整数,∴若a=9,则,需选B型机器8台次,此时费用共为240×9+170×8=3520(元);若a=8,则,需选B型机器9台次,此时费用共为240×8+170×9=3450(元);若a=7,则,需选B型机器11台次,此时费用共为240×7+170×11=3550(元);若a=6,则,需选B型机器12台次,此时费用共为240×6+170×12=3480(元);∵3450<3480<3520<3550,∴3天中选择共租A型机器8台次,B型机器9台次费用最省,如:A型机器前两天租3台,第3天租2台,B型机器每天租3台,此时的费用最省,最省总费用为3450元,答:共有4种方案可选择,分别为:3天中共租A型机器9台次,B型机器8台次;3天中共租A型机器8台次,B型机器9台次;3天中共租A型机器7台次,B型机器11台次;3天中共租A型机器6台次,B型机器12台次,其中3天中共租A型机器8台次,B型机器9台次(如A型机器前两天租3台,第3天租2台,B型机器每天租3台),此时的费用最省,最省总费用为3450元.【点睛】本题考查了一元一次方程的应用以及解一元一次不等式,解题的关键是:找准等量关系,正确列出一元一次方程以及根据各数量之间的关系,正确列出一元一次不等式.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题,共22页。试卷主要包含了如图,能判定AB∥CD的条件是,下列命题是假命题的有等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试课后测评,共18页。试卷主要包含了化简x-2,下列运算正确的是,已知整数,下列计算正确的有,下列计算正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试当堂达标检测题,共14页。试卷主要包含了下列式子,多项式+1的次数是,下列运算正确的是等内容,欢迎下载使用。