【高频真题解析】2022年贵州省毕节市中考数学模拟真题 (B)卷(精选)
展开
这是一份【高频真题解析】2022年贵州省毕节市中考数学模拟真题 (B)卷(精选),共32页。试卷主要包含了已知的两个根为等内容,欢迎下载使用。
2022年贵州省毕节市中考数学模拟真题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对于新能源汽车企业来说,2021年是不平凡的一年,无论是特斯拉还是中国的蔚来、小鹏、理想都实现了销量的成倍增长,下图是四家车企的标志,其中既是轴对称图形,又是中心对称图形的是( )A. B.C. D.2、将一长方形纸条按如图所示折叠,,则( )A.55° B.70° C.110° D.60°3、如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于点F,交AB于点G.有下列结论:①GA=GP;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④FP=FC,其中正确的结论有( )A.1个 B.2个 C.3个 D.4个4、如图,已知△ABC与△DEF位似,位似中心为点O,OA:OD=1:3,且△ABC的周长为2,则△DEF的周长为( )A.4 B.6 C.8 D.185、如图,在的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.点E是格点四边形ABCD的AB边上一动点,连接ED,EC,若格点与相似,则的长为( )A. B. C.或 D.或6、如图,中,是的中位线,连接,相交于点,若,则为( )A.3 B.4 C.9 D.127、某物体的三视图如图所示,那么该物体形状可能是( )A.圆柱 B.球 C.正方体 D.长方体8、已知的两个根为、,则的值为( )A.-2 B.2 C.-5 D.59、下列图形中,既是轴对称图形又是中心对称图形是( )A. B. C. D.10、如图,与位似,点O是位似中心,若,,则( )A.9 B.12 C.16 D.36第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是直线上的一点,和互余,平分,若,则的度数为__________.(用含的代数式表示)2、在中,DE∥BC,DE交边AB、AC分别于点D、E,如果与四边形BCED的面积相等,那么AD:DB的值为_______3、在平面直角坐标系中,直线l:与x轴交于点,如图所示依次作正方形、正方形、…、正方形,使得点、、、…在直线1上,点、、、…在y轴正半轴上,则点的坐标是________.4、如图,海中有一个小岛A,一艘轮船由西向东航行,在点处测得小岛A在它的北偏东方向上,航行12海里到达点处,测得小岛A在它的北偏东方向上,那么小岛A到航线的距离等于____________海里.5、如图,是的中线,,,把沿翻折,使点落在的位置,则为___.三、解答题(5小题,每小题10分,共计50分)1、若,则称m与n是关于1的平衡数.(1)8与 是关于1的平衡数;(2)与 (用含x的整式表示)是关于1的平衡数;(3)若,,判断a与b是否是关于1的平衡数,并说明理由.2、在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足.(1)求点A和点B的坐标;(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标.3、如图在中,,过点A作的垂线.垂足为D,E为线段上一动点(不与点C,点D重合),连接.以点A为中心,将线段逆时针旋转得到线段,连接,与线段交于点G.(1)求证:;(2)用等式表示线段与的数量关系,并证明.4、如图所示,下图是由七块积木搭成,这几块积木都是相同的正方体,利用下面方格纸中的纵横线,画出从这个图形的正面看、左面看和上面看的图形.5、如图,在Rt△ABC与Rt△ABD中,∠ACB=∠DAB=90°,AB2=BC·BD,AB=3,过点A作AE⊥BD,垂足为点E,延长AE、CB交于点F,连接DF(1)求证:AE=AC;(2)设,,求关于的函数关系式及其定义域;(3)当△ABC与△DEF相似时,求边BC的长. -参考答案-一、单选题1、C【分析】根据轴对称图形与中心对称图形的概念结合所给图形的特点即可得出答案.【详解】解:A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、既是轴对称图形,又是中心对称图形,故正确;D、既不是轴对称图形,也不是中心对称图形,故错误.故选:C.【点睛】本题考查了中心对称图形及轴对称图形的特点,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.2、B【分析】从折叠图形的性质入手,结合平行线的性质求解.【详解】解:由折叠图形的性质结合平行线同位角相等可知,,,.故选:B.【点睛】本题考查折叠的性质及平行线的性质,解题的关键是结合图形灵活解决问题.3、D【分析】①根据角平分线的性质和平行线的性质即可得到结论;②根据角平分线的性质和三角形的面积公式即可求出结论;③根据线段垂直平分线的性质即可得结果;④根据角平分线的性质和平行线的性质即可得到结果.【详解】解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP;②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴S△PAC:S△PAB=AC:AB,③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP=∠BCP,又∵PG∥AD,∴∠FPC=∠DCP,∴∠FPC=∠BCP,∴FP=FC,故①②③④都正确.故选:D.【点睛】本题主要考查了角平分线的性质和定义,平行线的性质,垂直平分线的判定,等腰三角形的性质,根据角平分线的性质和平行线的性质解答是解题的关键.4、B【分析】由与是位似图形,且知与的位似比是,从而得出周长:周长,由此即可解答.【详解】解:∵与是位似图形,且,与的位似比是.则周长:周长,∵△ABC的周长为2,∴周长故选:B.【点睛】本题考查了位似变换:位似图形的任意一对对应点与位似中心在同一直线上,它们到位似中心的距离之比等于相似比,位似是相似的特殊形式,位似比等于相似比,其对应的周长比等于相似比.5、C【分析】分∽和∽两种情况讨论,求得AE和BE的长度,根据勾股定理可求得DE和EC的长度,由此可得的长.【详解】解:由图可知DA=3,AB=8,BC=4,AE=8-EB,∠A=∠B=90°,若∽,则,即,解得或,当时,,,,当时,,,,若∽,则,即,解得(不符合题意,舍去),故或,故选:C.【点睛】本题考查相似三角形的性质和判定,勾股定理,能结合图形,分类讨论是解题关键.注意不要忽略了题干中格点三角形的定义.6、A【分析】根据DE∥BC,得△DEF∽△CBF,得到,利用BE是中线,得到+=,计算即可.【详解】∵是的中位线,∴DE∥BC,BC=2DE,∴△DEF∽△CBF,∴,∴,∵,∴,∵BE是中线,∴=,∵是的中位线,∴DE∥BC,∴=,∴=,∴++=+,∴+=,∴=3,故选A.【点睛】本题考查了三角形中位线定理,中线的性质,相似三角形的性质,熟练掌握中位线定理,灵活选择相似三角形的性质是解题的关键.7、A【分析】根据主视图和左视图都是矩形,俯视图是圆,可以想象出只有圆柱符合这样的条件,因此物体的形状是圆柱.【详解】解:根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,则该几何体是圆柱. 故选:A.【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.熟悉简单的立体图形的三视图是解本题的关键.8、B【分析】直接运用一元二次方程根与系数的关系求解即可.【详解】解:∵的两个根为、,∴故选:B【点睛】本题主要考查了一元二次方程根与系数的关系,若、为一元二次方程的两个实数根,则有,.9、B【分析】根据轴对称图形和中心对称图形的定义求解即可.【详解】解:A、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意;B、既是轴对称图形又是中心对称图形,故选项正确,符合题意;C、不是轴对称图形,是中心对称图形,故选项错误,不符合题意;D、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意.故选:B.【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.10、D【分析】根据位似变换的性质得到,得到,求出,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:与位似,,,,,,,故选:D.【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.二、填空题1、2m【分析】根据互余定义求得∠DOC=90°,由此得到∠COE=90°-m,根据角平分线的定义求得∠BOC的度数,利用互补求出答案.【详解】解:∵和互余,∴ + =90°,∴∠DOC=90°,∵,∴∠COE=90°-m,∵平分,∴∠BOC=2∠COE=180°-2m,∴ =180°-∠BOC=2m,故答案为:2m.【点睛】此题考查了角平分线的定义,余角的定义,补角的定义,正确理解图形中各角度的关系并进行推理论证是解题的关键.2、##【分析】由DE∥BC,可得△ADE∽△ABC,又由△ADE的面积与四边形BCED的面积相等,根据相似三角形的面积比等于相似比的平方,即可求得的值,然后利用比例的性质可求出AD:DB的值.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∵△ADE的面积与四边形BCED的面积相等,∴,∴,∴,∴.故答案为:.【点睛】此题考查了相似三角形的判定与性质.此题难度不大,解题的关键是注意相似三角形的面积比等于相似比的平方定理的应用与数形结合思想的应用.3、【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点A1、B1的坐标,同理可得出A2、A3、A4、A5、…及B2、B3、B4、B5、…的坐标,根据点的坐标的变化可找出变化规律“Bn(2n-1,2n-1)(n为正整数)”,依此规律即可得出结论.【详解】解:当y=0时,有x-1=0,解得:x=1,∴点A1的坐标为(1,0).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1).同理,可得出:A2(2,1),A3(4,3),A4(8,7),A5(16,15),…,∴B2(2,3),B3(4,7),B4(8,15),B5(16,31),…,∴Bn(2n-1,2n-1)(n为正整数),故答案为:【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn(2n-1,2n-1)(n为正整数)”是解题的关键.4、【分析】如图,过点A作AD⊥BC于D,根据题意可知∠EBA=60°,∠FCA=30°,EB⊥BC,FC⊥BC,可得∠ABD=30°,∠ACD=60°,∠CAD=30°,根据外角性质可得∠BAC=30°,可得AC=BC,根据含30°角的直角三角形的性质可得出CD的长,利用勾股定理即可求出AD的长,可得答案.【详解】如图,过点A作AD⊥BC于D,根据题意可知∠EBA=60°,∠FCA=30°,EB⊥BC,FC⊥BC,BC=12,∴∠ABD=30°,∠ACD=60°,∠CAD=30°,∴∠BAC=∠ACD-∠ABD=30°,∴AC=BC=12,∴CD=AC=6,∴AD===.故答案为:【点睛】本题考查方向角的定义、三角形外角性质、含30°角的直角三角形的性质及勾股定理,三角形的一个外角,等于和它不相邻的两个内角的和;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定义是解题关键.5、【分析】根据翻折知:∠ADE=∠ADC=45°,ED=EC,得到∠BDE=90°,利用勾股定理计算即可.【详解】解:是的中线,,翻折,,,,,在中,由勾股定理得:,故答案为:.【点睛】本题考查的是翻折变换以及勾股定理,熟记翻折前后图形的对应角相等、对应边相等是解题的关键.三、解答题1、(1)-7(2)5-x(3)是,理由见解析【分析】(1)根据平衡数的定义即可求出答案.(2)根据平衡数的定义即可求出答案.(3)根据平衡数的定义以及整式的加减运算法则即可求出答案.(1)∵8+(﹣7)=1,∴8与﹣7是关于1的平衡数,故答案为:-7;(2)∵1﹣(x﹣4)=1﹣x +4=5﹣x,∴5﹣x与x﹣4是关于1的平衡数,故答案为:5﹣x.(3)∵,∴ =1∴a与b是关于1的平衡数.【点睛】本题考查整式的混合运算与化简求值,解题的关键是正确理解平衡数的定义.2、(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;(3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解.【详解】(1)∵,∴.∵,∴,∴,∴,∴,.(2)如图,过点F作FH⊥AO于点H∵AF⊥AE∴∠FHA=∠AOE=90°,∵ ∴∠AFH=∠EAO又∵AF=AE,在和中 ∴∴AH=EO=2,FH=AO=4∴OH=AO-AH=2∴F(-2,4) ∵OA=BO, ∴FH=BO在和中 ∴∴HD=OD∵ ∴HD=OD=1∴D(-1,0)∴D(-1,0),F(-2,4);(3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S∴∴, ∴∴ ∴∴等腰∴NQ=NO,∵NG⊥PN, NS⊥EG∴ ∴, ∴ ∵,∴ ∵点E为线段OB的中点∴ ∴ ∴ ∴ ∴∴ ∴∴等腰∴NG=NP, ∵∴ ∴∠QNG=∠ONP在和中 ∴∴∠NGQ=∠NPO,GQ=PO∵,∴PO=PB∴∠POE=∠PBE=45°∴∠NPO=90°∴∠NGQ=90°∴∠QGR=45°. 在和中 ∴.∴QR=OE在和中 ∴∴QM=OM.∵NQ=NO,∴NM⊥OQ∵∴等腰∴ ∵ ∴在和中 ∴∴NS=EM=4,MS=OE=2∴N(-6,2).【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解.3、(1)见解析(2)线段与的数量关系是.证明见解析【分析】(1)由题意知,故.(2)过点A作的垂线,可证得,由全等三角形性质知,由相似三角形的性质即可推导得.(1)∵,∴,∵,∴,∴(2)连接.在和中,∴,∴,∵,∴,∴,∴,∵,∴∵,∴【点睛】本题考查了全等三角形的判定及性质,等腰三角形的性质,由相似的性质得另外两边与中位线的交点为中点.4、图见解析【分析】从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右2列正方形的个数依次为3,1;从上面看从左往右3列正方形的个数依次为1,2,1;画出从正面,左面,上面看,得到的图形即可.【详解】解:如图所示:【点睛】本题考查了作图−−三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.5、(1)证明见解析(2),(3)或【分析】(1)由题意可证得,,即∠EAB=∠CAB,则可得,故AE=AC.(2)可证得,故有,在中由勾股定理有,联立后化简可得出,BC的定义域为.(3)由(1)(2)问可设,,,,若△ABC与△DEF相似时,则有和两种情况,再由对应边成比例列式代入化简即可求得x的值.(1)∵AB2=BC·BD∴又∵∠ACB=∠DAB=90°∴∴∠ADB=∠CAB在Rt△EBA与Rt△ABD中∠AEB=∠DAB=90°,∠ABD=∠ABD∴∴∠ADB=∠EAB∴∠EAB =∠CAB在Rt△EBA与Rt△CAB中∠EAB =∠CABAB=AB∠ACB=∠AEB=90°∴∴AE=AC(2)∵∠ACB=∠FEB=90°,∠F=∠F∴∴∴在中由勾股定理有即代入化简得由(1)问知AC=AE,BE=BC=x则式子左右两边减去得式子左右两边同时除以得∵∴在中由勾股定理有即∴移项、合并同类项得,由图象可知BC的取值范围为.(3)由(1)、(2)问可得,,,当时由(1)问知即则化简为约分得移向,合并同类项得则或(舍)当时由(1)问知即则化简得约分得移项得去括号得移向、合并同类项得则或(舍)综上所述当△ABC与△DEF相似时, BC的长为或.【点睛】本题考查了相似三角形的判定及证明,全等三角形的判定及证明,勾股定理,需熟练掌握相似三角形和全等三角形的判定及性质,本题解题过程中计算过程较复杂繁琐,耐心细致的计算是解题的关键.
相关试卷
这是一份【高频真题解析】2022年河北省中考数学模拟真题测评 A卷(精选),共25页。试卷主要包含了方程的解为,把分式化简的正确结果为,一元二次方程的一次项的系数是等内容,欢迎下载使用。
这是一份【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选),共21页。试卷主要包含了下列各式,下列说法正确的是.,不等式+1<的负整数解有,计算12a2b4•÷的结果等于,分式方程有增根,则m为等内容,欢迎下载使用。
这是一份【历年真题】2022年贵州省毕节市中考数学模拟定向训练 B卷(精选),共26页。