终身会员
搜索
    上传资料 赚现金
    2023届高考一轮复习讲义(理科)第三章 导数及其应用 第3讲 高效演练分层突破学案
    立即下载
    加入资料篮
    2023届高考一轮复习讲义(理科)第三章 导数及其应用    第3讲 高效演练分层突破学案01
    2023届高考一轮复习讲义(理科)第三章 导数及其应用    第3讲 高效演练分层突破学案02
    2023届高考一轮复习讲义(理科)第三章 导数及其应用    第3讲 高效演练分层突破学案03
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高考一轮复习讲义(理科)第三章 导数及其应用 第3讲 高效演练分层突破学案

    展开
    这是一份2023届高考一轮复习讲义(理科)第三章 导数及其应用 第3讲 高效演练分层突破学案,共6页。

    1.定积分eq \i\in(0,1,)(3x+ex)dx的值为( )
    A.e+1 B.e
    C.e-eq \f(1,2) D.e+eq \f(1,2)
    解析:选D.eq \i\in(0,1,)(3x+ex)dx=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)x2+ex))eq \b\lc\|(\a\vs4\al\c1(1,0))=eq \f(3,2)+e-1=eq \f(1,2)+e.
    2.若f(x)=eq \b\lc\{(\a\vs4\al\c1(lg x,x>0,,x+\a\vs4\al(\i\in(0,a,)3t2dt,x≤0,)))f(f(1))=1,则a的值为( )
    A.1 B.2
    C.-1 D.-2
    解析:选A.因为f(1)=lg 1=0,f(0)=eq \i\in(0,a,)3t2dt=t3eq \b\lc\|(\a\vs4\al\c1(a,0))=a3,所以由f(f(1))=1得a3=1,所以a=1.
    3.若f(x)=x2+2eq \i\in(0,1,)f(x)dx,则eq \i\in(0,1,)f(x)dx=( )
    A.-1 B.-eq \f(1,3)
    C.eq \f(1,3) D.1
    解析:选B.因为f(x)=x2+2eq \i\in(0,1,)f(x)dx,
    所以eq \i\in(0,1,)f(x)dx=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)x3+2x\a\vs4\al(\i\in(0,1,)f(x)dx)))eq \b\lc\|(\a\vs4\al\c1(1,0))
    =eq \f(1,3)+2eq \i\in(0,1,)f(x)dx,所以eq \i\in(0,1,)f(x)dx=-eq \f(1,3).
    4.设f(x)=eq \b\lc\{(\a\vs4\al\c1(\r(1-x2),x∈[-1,1],,x2-1,x∈(1,2],))则eq \i\in(-1,2,)f(x)dx的值为( )
    A.eq \f(π,2)+eq \f(4,3) B.eq \f(π,2)+3
    C.eq \f(π,4)+eq \f(4,3) D.eq \f(π,4)+3
    解析:选A.eq \i\in(-1,2,)f(x)dx=eq \i\in(-1,1,)eq \r(1-x2)dx+eq \i\in(1,2,)(x2-1)dx=eq \f(1,2)π×12+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)x3-x))eq \b\lc\|(\a\vs4\al\c1(2,1))=eq \f(π,2)+eq \f(4,3),故选A.
    5.由曲线y=x2和曲线y=eq \r(x)围成的一个叶形图如图所示,则图中阴影部分的面积为( )
    A.eq \f(1,3) B.eq \f(3,10)
    C.eq \f(1,4) D.eq \f(1,5)
    解析:选A.由eq \b\lc\{(\a\vs4\al\c1(y=x2,,y=\r(x),))解得eq \b\lc\{(\a\vs4\al\c1(x=0,,y=0))或eq \b\lc\{(\a\vs4\al\c1(x=1,,y=1,))所以阴影部分的面积为eq \i\in(0,1,)(eq \r(x)-x2)dx=eq \f(1,3).故选A.
    6.定积分eq \i\in(-1,1,)(x2+sin x)dx=________.
    解析:eq \i\in(-1,1,)(x2+sin x)dx
    =eq \i\in(-1,1,)x2dx+eq \i\in(-1,1,)sin xdx
    =2eq \i\in(0,1,)x2dx=2·eq \f(x3,3)eq \b\lc\|(\a\vs4\al\c1(1,0))=eq \f(2,3).
    答案:eq \f(2,3)
    7.eq \i\in(-1,1,)(x2tan x+x3+1)dx=________.
    解析:因为x2tan x+x3是奇函数.
    所以eq \i\in(-1,1,)(x2tan x+x3+1)dx=eq \i\in(-1,1,)1dx=x|eq \\al(1,-1)=2.
    答案:2
    8.一物体受到与它运动方向相反的力:F(x)=eq \f(1,10)ex+x的作用,则它从x=0运动到x=1时F(x)所做的功等于________.
    解析:由题意知W=-eq \i\in(0,1,)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,10)ex+x))dx
    =-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,10)ex+\f(1,2)x2))eq \b\lc\|(\a\vs4\al\c1(1,0))=-eq \f(e,10)-eq \f(2,5).
    答案:-eq \f(e,10)-eq \f(2,5)
    9.求下列定积分:
    (1)eq \i\in(1,2,)eq \b\lc\(\rc\)(\a\vs4\al\c1(x-x2+\f(1,x)))dx;
    (2)eq \i\in(-π,0,)(cs x+ex)dx.
    解:(1)eq \i\in(1,2,)eq \b\lc\(\rc\)(\a\vs4\al\c1(x-x2+\f(1,x)))dx=eq \i\in(1,2,)xdx-eq \i\in(1,2,)x2dx+eq \i\in(1,2,)eq \f(1,x)dx
    =eq \f(x2,2)eq \b\lc\|(\a\vs4\al\c1(2,1))-eq \f(x3,3)eq \b\lc\|(\a\vs4\al\c1(2,1))+ln xeq \b\lc\|(\a\vs4\al\c1(2,1))=eq \f(3,2)-eq \f(7,3)+ln 2=ln 2-eq \f(5,6).
    (2)eq \i\in(-π,0,)(cs x+ex)dx=eq \i\in(-π,0,)cs xdx+eq \i\in(-π,0,)exdx
    =sin xeq \b\lc\|(\a\vs4\al\c1(0,-π))+exeq \b\lc\|(\a\vs4\al\c1(0,-π))=1-eq \f(1,eπ).
    10.已知函数f(x)=x3-x2+x+1,求其在点(1,2)处的切线与函数g(x)=x2围成的图形的面积.
    解:因为(1,2)为曲线f(x)=x3-x2+x+1上的点,
    设过点(1,2)处的切线的斜率为k,
    则k=f′(1)
    =(3x2-2x+1)|x=1=2,
    所以过点(1,2)处的切线方程为y-2=2(x-1),即y=2x.
    y=2x与函数g(x)=x2围成的图形如图中阴影部分所示,由eq \b\lc\{(\a\vs4\al\c1(y=x2,,y=2x))可得交点A(2,4),O(0,0),故y=2x与函数g(x)=x2围成的图形的面积
    S=eq \i\in(0,2,)(2x-x2)dx=eq \b\lc\(\rc\)(\a\vs4\al\c1(x2-\f(1,3)x3))eq \b\lc\|(\a\vs4\al\c1(2,0))=4-eq \f(8,3)=eq \f(4,3).
    [综合题组练]
    1.由曲线xy=1,直线y=x,x=3所围成的封闭平面图形的面积为( )
    A.eq \f(32,9) B.4-ln 3
    C.4+ln 3 D.2-ln 3
    解析:选B.画出平面图形,根据图形确定积分的上、下限及被积函数.由曲线xy=1,直线y=x,x=3所围成的封闭的平面图形如图所示:
    由eq \b\lc\{(\a\vs4\al\c1(xy=1,,y=x,))得eq \b\lc\{(\a\vs4\al\c1(x=1,,y=1))
    或eq \b\lc\{(\a\vs4\al\c1(x=-1,,y=-1.(舍)))
    由eq \b\lc\{(\a\vs4\al\c1(y=x,,x=3,))得eq \b\lc\{(\a\vs4\al\c1(x=3,,y=3.))
    故阴影部分的面积为eq \i\in(1,3,)eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,x)))dx=
    eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x2-ln x))eq \b\lc\|(\a\vs4\al\c1(3,,1))=4-ln 3.
    2.设函数f(x)=ax2+c(a≠0),若eq \i\in(0,1,)f(x)dx=f(x0),0≤x0≤1,则x0的值为________.
    解析:eq \i\in(0,1,)f(x)dx=eq \i\in(0,1,)(ax2+c)dx=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)ax3+cx))eq \b\lc\|(\a\vs4\al\c1(1,,0))=eq \f(1,3)a+c=f(x0)=axeq \\al(2,0)+c,
    所以xeq \\al(2,0)=eq \f(1,3),x0=±eq \f(\r(3),3).
    又因为0≤x0≤1,所以x0=eq \f(\r(3),3).
    答案:eq \f(\r(3),3)
    3.eq \i\in(-1,1,)(eq \r(1-x2)+ex-1)dx=________.
    解析:eq \i\in(-1,1,)(eq \r(1-x2)+ex-1)dx
    =eq \i\in(-1,1,)eq \r(1-x2)dx+eq \i\in(-1,1,)(ex-1)dx.
    因为eq \i\in(-1,1,)eq \r(1-x2)dx表示单位圆的上半部分的面积,
    所以eq \i\in(-1,1,)eq \r(1-x2)dx=eq \f(π,2).
    而eq \i\in(-1,1,)(ex-1)dx=(ex-x)eq \b\lc\|(\a\vs4\al\c1(1,-1))
    =(e1-1)-(e-1+1)=e-eq \f(1,e)-2,
    所以eq \i\in(-1,1,)(eq \r(1-x2)+ex-1)dx=eq \f(π,2)+e-eq \f(1,e)-2.
    答案:eq \f(π,2)+e-eq \f(1,e)-2
    4.若函数f(x)在R上可导,f(x)=x3+x2f′(1),则eq \i\in(0,2,)f(x)dx=________.
    解析:因为f(x)=x3+x2f′(1),
    所以f′(x)=3x2+2xf′(1).
    所以f′(1)=3+2f′(1),解得f′(1)=-3.
    所以f(x)=x3-3x2.
    故eq \i\in(0,2,)f(x)dx=eq \i\in(0,2,)(x3-3x2)dx=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x4,4)-x3))eq \b\lc\|(\a\vs4\al\c1(2,0))=-4.
    答案:-4
    5.如图,在曲线C:y=x2,x∈[0,1]上取点P(t,t2),过点P作x轴的平行线l.曲线C与直线x=0,x=1及直线l围成的图形包括两部分,面积分别记为S1,S2.当S1=S2时,求t的值.
    解:根据题意,直线l的方程是y=t2,且0<t<1.
    结合题图,得交点坐标分别是
    A(0,0),P(t,t2),B(1,1).
    所以S1=eq \i\in(0,t,)(t2-x2)dx=eq \b\lc\(\rc\)(\a\vs4\al\c1(t2x-\f(1,3)x3))eq \b\lc\|(\a\vs4\al\c1(t,0))
    =t3-eq \f(1,3)t3=eq \f(2,3)t3,0<t<1.
    S2=eq \i\in(t,1,)(x2-t2)dx=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)x3-t2x))eq \b\lc\|(\a\vs4\al\c1(1,t))
    =eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)-t2))-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)t3-t3))
    =eq \f(2,3)t3-t2+eq \f(1,3),0<t<1.
    由S1=S2,
    得eq \f(2,3)t3=eq \f(2,3)t3-t2+eq \f(1,3),
    所以t2=eq \f(1,3).又0<t<1,所以t=eq \f(\r(3),3).
    所以当S1=S2时,t=eq \f(\r(3),3).
    相关学案

    2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第1课时 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第1课时 高效演练分层突破学案,共7页。

    2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第4课时 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第4课时 高效演练分层突破学案,共4页。

    2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第3课时 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第3课时 高效演练分层突破学案,共4页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023届高考一轮复习讲义(理科)第三章 导数及其应用 第3讲 高效演练分层突破学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map