2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第9讲 高效演练 分层突破学案
展开1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( )
A.y=100x B.y=50x2-50x+100
C.y=50×2x D.y=100lg2x+100
解析:选C.根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得.故选C.
2.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是( )
解析:选D.依题意知当0≤x≤4时,f(x)=2x;当4
A.5千米处 B.4千米处
C.3千米处 D.2千米处
解析:选A.设仓库应建在离车站x千米处.因为仓库每月占用费y1与仓库到车站的距离成反比,所以令反比例系数为m(m>0),则y1=eq \f(m,x).当x=10时,y1=eq \f(m,10)=2,所以m=20.因为每月车载货物的运费y2与仓库到车站的距离成正比,所以令正比例系数为n(n>0),则y2=nx.当x=10时,y2=10n=8,所以n=eq \f(4,5).所以两项费用之和为y=y1+y2=eq \f(20,x)+eq \f(4x,5)≥2eq \r(\f(20,x)·\f(4x,5))=8,当且仅当eq \f(20,x)=eq \f(4x,5),即x=5时取等号.所以要使这两项费用之和最小,仓库应建在离车站5千米处.故选A.
4.某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2017年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )
A.2020年 B.2021年
C.2022年 D.2023年
解析:选B.若2018年是第一年,则第n年科研费为1 300×1.12n,由1 300×1.12n>2 000,可得lg 1.3+n lg 1.12>lg 2,得n×0.05>0.19,n>3.8,n≥4,即4年后,到2021年科研经费超过2 000万元.故选B.
5.(2019·高考北京卷)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2-m1=eq \f(5,2)lgeq \f(E1,E2),其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )
A. 1010.1 B. 10.1
C. lg 10.1 D. 10-10.1
解析:选A.根据题意,设太阳的星等与亮度分别为m1与E1,天狼星的星等与亮度分别为m2与E2,则由已知条件可知m1=-26.7,m2=-1.45,根据两颗星的星等与亮度满足m2-m1=eq \f(5,2)lg eq \f(E1,E2),把m1与m2的值分别代入上式得,-1.45-(-26.7)=eq \f(5,2)lgeq \f(E1,E2),得lg eq \f(E1,E2)=10.1,所以eq \f(E1,E2)=1010.1,故选A.
6.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.
注:“累计里程”指汽车从出厂开始累计行驶的路程.
在这段时间内,该车每100千米平均耗油量为 升.
解析:因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35 600-35 000=600(千米),故每100千米平均耗油量为48÷6=8(升).
答案:8
7.李冶(1192-1279),真定栾城(今河北省石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是 步、 步.(注:240平方步为1亩,圆周率按3近似计算)
解析:设圆池的半径为r步,则方田的边长为(2r+40)步,由题意,得(2r+40)2-3r2=13.75×240,解得r=10或r=-170(舍),所以圆池的直径为20步,方田的边长为60步.
答案:20 60
8.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,则y(万元)与x(件)的函数关系式为 ,该工厂的年产量为 件时,所得年利润最大(年利润=年销售总收入-年总投资).
解析:当0
(1)设MP=x米,PN=y米,将y表示成x的函数,求该函数的解析式及定义域;
(2)求矩形BNPM面积的最大值.
解:(1)作PQ⊥AF于点Q,所以PQ=8-y,EQ=x-4,
在△EDF中,eq \f(EQ,PQ)=eq \f(EF,FD),所以eq \f(x-4,8-y)=eq \f(4,2),所以y=-eq \f(1,2)x+10,定义域为{x|4≤x≤8}.
(2)设矩形BNPM的面积为S,则S(x)=xy=xeq \b\lc\(\rc\)(\a\vs4\al\c1(10-\f(x,2)))
=-eq \f(1,2)(x-10)2+50,所以S(x)是关于x的二次函数,且其开口向下,对称轴为x=10,所以当x∈[4,8]时,S(x)单调递增,所以当x=8时,矩形BNPM面积取得最大值48平方米.
10.某公司对营销人员有如下规定:①年销售额x(单位:万元)在8万元以下,没有奖金;
②年销售额x(单位:万元),x∈[8,64]时,奖金为y万元,且y=lgax,y∈[3,6],且年销售额越大,奖金越多;
③年销售额超过64万元,按年销售额的10%发奖金.
(1)求奖金y关于x的函数解析式;
(2)若某营销人员争取奖金y∈[4,10](单位:万元),则年销售额x(单位:万元)在什么范围内?
解:(1)依题意,y=lgax在x∈[8,64]上为增函数,所以eq \b\lc\{(\a\vs4\al\c1(lga8=3,,lga64=6,))解得a=2,所以y=eq \b\lc\{(\a\vs4\al\c1(0,0≤x<8,,lg2x,8≤x≤64,,\f(1,10)x,x>64.))
(2)易知x≥8,当8≤x≤64时,要使y∈[4,10],则4≤lg2x≤10,解得16≤x≤1 024,所以16≤x≤64;当x>64时,要使y∈[4,10],则40≤x≤100,所以64
1.(创新型)我们定义函数y=[x]([x]表示不大于x的最大整数)为“下整函数”;定义y={x}({x}表示不小于x的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x小时,则李刚应付费为(单位:元)( )
A.2[x+1] B.2([x]+1)
C.2{x} D.{2x}
解析:选C.如x=1时,应付费2元,
此时2[x+1]=4,2([x]+1)=4,排除A,B;当x=0.5时,付费为2元,此时{2x}=1,排除D,故选C.
2.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=ae-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过 min,容器中的沙子只有开始时的八分之一.
解析:当t=0时,y=a;
当t=8时,y=ae-8b=eq \f(1,2)a,故e-8b=eq \f(1,2).
当容器中的沙子只有开始时的八分之一时,即y=ae-bt=eq \f(1,8)a,e-bt=eq \f(1,8)=(e-8b)3=e-24b,则t=24,所以再经过16 min容器中的沙子只有开始时的八分之一.
答案:16
3.某旅游景点预计2019年1月份起前x个月的旅游人数的和p(x)(单位:万人)与x的关系近似为p(x)=eq \f(1,2)x(x+1)·(39-2x)(x∈N*,且x≤12).已知第x个月的人均消费额q(x)(单位:元)与x的近似关系是q(x)=eq \b\lc\{(\a\vs4\al\c1(35-2x,x∈N*,且1≤x≤6,,\f(160,x),x∈N* 且7≤x≤12.))
(1)写出2019年第x个月的旅游人数f(x)(单位:万人)与x的函数关系式;
(2)试问2019年第几个月的旅游消费总额最大?最大月旅游消费总额为多少元?
解:(1)当x=1时,f(1)=p(1)=37,当2≤x≤12,且x∈N*时,f(x)=p(x)-p(x-1)=eq \f(1,2)x(x+1)(39-2x)-eq \f(1,2)x(x-1)(41-2x)=-3x2+40x,经验证x=1时也满足此式.
所以f(x)=-3x2+40x(x∈N*,且1≤x≤12).
(2)第x(x∈N*)个月的旅游消费总额为g(x)=
eq \b\lc\{(\a\vs4\al\c1((-3x2+40x)(35-2x),x∈N*,且1≤x≤6,,-480x+6 400,x∈N*,且7≤x≤12.))
①当1≤x≤6,且x∈N*时,g′(x)=18x2-370x+1 400,
令g′(x)=0,解得x=5或x=eq \f(140,9)(舍去).
当1≤x≤5时,g′(x)≥0,当5
4.某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是[10,100](单位:万元).现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加且资金不超过5万元,同时资金不超过投资收益的20%.
(1)若建立函数模型y=f(x)制定奖励方案,请你根据题意,写出奖励函数模型应满足的条件;
(2)现有两个奖励函数模型:(ⅰ)y=eq \f(1,20)x+1;
(ⅱ)y=lg2x-2.试分析这两个函数模型是否符合公司要求.
解:(1)设奖励函数模型为y=f(x),
则该函数模型满足的条件是:
①当x∈[10,100]时,f(x)是增函数;
②当x∈[10,100]时,f(x)≤5恒成立;
③当x∈[10,100]时,f(x)≤eq \f(x,5)恒成立.
(2)(a)对于函数模型(ⅰ)y=eq \f(1,20)x+1,
它在[10,100]上是增函数,满足条件①;
但当x=80时,y=5,因此,当x>80时,y>5,不满足条件②;故该函数模型不符合公司要求.
(b)对于函数模型(ⅱ)y=lg2x-2,它在[10,100]上是增函数,满足条件①,
x=100时,ymax=lg2100-2=2lg25<5,即f(x)≤5恒成立.满足条件②,
设h(x)=lg2x-2-eq \f(1,5)x,则h′(x)=eq \f(lg2e,x)-eq \f(1,5),
又x∈[10,100],所以eq \f(1,100)≤eq \f(1,x)≤eq \f(1,10),
所以h′(x)≤eq \f(lg2e,10)-eq \f(1,5)
故该函数模型符合公司要求.
综上所述,函数模型(ⅱ)y=lg2x-2符合公司要求.
加油时间
加油量(升)
加油时的累计里程(千米)
2019年5月1日
12
35 000
2019年5月15日
48
35 600
2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第6讲 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第6讲 高效演练 分层突破学案,共4页。
2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第7讲 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第7讲 高效演练 分层突破学案,共6页。
2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第4讲 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第4讲 高效演练 分层突破学案,共4页。