所属成套资源:中考数学课时复习(含答案)
中考数学课时复习(含答案):74 开放性问题
展开
这是一份中考数学课时复习(含答案):74 开放性问题,共2页。
74开放性问题填空题1. 如图,直线a、b被直线c所截,若满足 ∠1=∠2 ,则a、b平行.(第1题图)考点:平行线的判定.专题:开放型.分析:根据同位角相等两直线平行可得∠1=∠2时,a∥B.解答:解:∵∠1=∠2,∴a∥b(同位角相等两直线平行),故答案为:∠1=∠2.点评:此题主要考查了平行线的判定,关键是掌握同位角相等两直线平行.2.写出一个运算结果是a6的算式 a2•a4 . 考点:幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法专题:开放型.分析:根据同底数幂的乘法底数不变指数相加,可得答案.解答:解:a2•a4=a6,故答案为:a2•a4=a6.点评:本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加. 选择题1.若有一等差数列,前九项和为54,且第一项、第四项、七项的和为36,则此等差数列的公差为何?( )A.﹣6 B.﹣3 C.3 D.6分析:由等差数列的性质可知:前九项和为54,得出第五项=54÷9=6;由且第一项、第四项、第七项的和为36,得出第四项=36÷3=12,由此求得公差解决问题.解:∵前九项和为54,∴第五项=54÷9=6,∵第一项、第四项、第七项的和为36,∴第四项=36÷3=12,∴公差=第五项﹣第四项=6﹣12=﹣6.故选:A.点评:此题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用.
相关试卷
这是一份中考数学一轮复习课时练习专题4开放探索问题(含答案),共8页。试卷主要包含了请写出一个小于4的无理数等内容,欢迎下载使用。
这是一份初中数学中考复习 2020年九年级数学中考综合复习4: 开放与探索性问题 复习讲义,共13页。试卷主要包含了开放性问题,探究性问题等内容,欢迎下载使用。
这是一份各地2018年中考数学试卷精选汇编 开放性问题(pdf,含解析),共9页。