所属成套资源:2022届中考数学二轮复习 学案+课件(1-20课时)
- 专题提升(17) 开放探究题学案 学案 4 次下载
- 专题提升(19) 操作实践题学案 学案 4 次下载
- 专题提升(20) 方案设计题学案 学案 4 次下载
- 专题提升(1) 数形结合与实数的运算课件PPT 课件 6 次下载
- 专题提升(2) 代数式的化简与求值课件PPT 课件 7 次下载
专题提升(18) 归纳与猜想学案
展开
这是一份专题提升(18) 归纳与猜想学案,共5页。学案主要包含了问题情境,探究展示,拓展延伸等内容,欢迎下载使用。
专题提升(18) 归纳与猜想专题提升演练1.观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,……,根据你所发现的规律,请直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1的值为( )A.100 B.1 000 C.10 000 D.100 000答案C2.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是( )A.(11,3) B.(3,11) C.(11,9) D.(9,11)答案A3.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得,第56个点的坐标为 . 答案(11,10)4.如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形,第1幅图形中“”的个数为a1,第2幅图形中“”的个数为a2,第3幅图形中“”的个数为a3,…,以此类推,则+…+= . 答案5.【问题情境】如图①,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC.(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图②,探究展示(1)(2)中的结论是否成立?请分别作出判断.解(1)证明:延长AE,BC并交于点N,如图①甲,图①甲 ∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图①乙所示.图①乙 ∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°-∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE,BC并交于点P,如图②甲.图②甲 ∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图②乙所示.图②乙 ∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°-∠BAE=∠DAE.∴∠Q=90°-∠QAB=90°-∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠DAE=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD”矛盾,故假设不成立.∴AM=DE+BM不成立.
相关学案
这是一份初中数学北京课改版七年级下册7.3 归纳导学案,共12页。
这是一份【暑假提升】浙教版数学八年级(八升九)暑假-专题第18讲《圆》预习讲学案,文件包含第18讲圆解析版docx、第18讲圆原卷版docx等2份学案配套教学资源,其中学案共40页, 欢迎下载使用。
这是一份数学七年级下册7.3 归纳导学案及答案,共4页。