- 专题22.42 二次函数压轴题-特殊三角形问题(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 试卷 3 次下载
- 专题22.43 二次函数压轴题-特殊四边形问题(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 试卷 3 次下载
- 专题22.45 《二次函数》中考真题专练(巩固篇)(专项练习1)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 试卷 5 次下载
- 专题22.46 《二次函数》中考真题专练(巩固篇)(专项练习2)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 试卷 4 次下载
- 专题23.1 图形的旋转(知识讲解)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 其他 5 次下载
专题22.44 《二次函数》中考真题专练(基础篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)
展开专题12.44 《二次函数》中考真题专练(基础篇)(专项练习)
一、单选题
1.(2021·西藏中考真题)将抛物线y=(x﹣1)2+2向左平移3个单位长度,再向下平移4个单位长度所得到的抛物线的解析式为( )
A.y=x2﹣8x+22 B.y=x2﹣8x+14 C.y=x2+4x+10 D.y=x2+4x+2
2.(2019·黑龙江中考真题)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).
A.; B.;
C.; D..
3.(2021·浙江绍兴·)关于二次函数的最大值或最小值,下列说法正确的是( )
A.有最大值4 B.有最小值4 C.有最大值6 D.有最小值6
4.(2021·广西河池·中考真题)二次函数的图象如图所示,下列说法中,错误的是( )
A.对称轴是直线 B.当时,
C. D.
5.(2021·湖北襄阳·中考真题)一次函数的图象如图所示,则二次函数的图象可能是( )
A. B. C. D.
6.(2021·辽宁阜新市教育服务中心中考真题)如图,二次函数的图象与x轴交于A,两点,则下列说法正确的是( )
A. B.点A的坐标为
C.当时,y随x的增大而减小 D.图象的对称轴为直线
7.(2021·广东广州·中考真题)抛物线经过点、,且与y轴交于点,则当时,y的值为( )
A. B. C. D.5
8.(2021·贵州黔东南·中考真题)如图,抛物线与轴只有一个公共点A(1,0),与轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线,则图中两个阴影部分的面积和为( )
A.1 B.2 C.3 D.4
9.(2021·江苏徐州·中考真题)在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )
A. B. C. D.
10.(2021·江苏常州·中考真题)已知二次函数,当时,y随x增大而增大,则实数a的取值范围是( )
A. B. C. D.
11.(2021·四川泸州·)直线l过点(0,4)且与y轴垂直,若二次函数(其中x是自变量)的图像与直线l有两个不同的交点,且其对称轴在y轴右侧,则a的取值范围是( )
A.a>4 B.a>0 C.0<a≤4 D.0<a<4
12.(2020·湖南娄底·中考真题)函数的零点是指使函数值等于零的自变量的值,则下列函数中存在零点的是( )
A. B. C. D.
13.(2020·河北中考真题)如图,现要在抛物线上找点,针对的不同取值,所找点的个数,三人的说法如下,
甲:若,则点的个数为0;
乙:若,则点的个数为1;
丙:若,则点的个数为1.
下列判断正确的是( )
A.乙错,丙对 B.甲和乙都错
C.乙对,丙错 D.甲错,丙对
14.(2020·湖北襄阳·中考真题)二次函数的图象如图所示,下列结论:①;②;③;④当时,y随x的增大而减小,其中正确的有( )
A.4个 B.3个 C.2个 D.1个
15.(2020·贵州贵阳·中考真题)已知二次函数的图象经过与两点,关于的方程有两个根,其中一个根是3.则关于的方程有两个整数根,这两个整数根是( )
A.或0 B.或2 C.或3 D.或4
16.(2020·山东德州·中考真题)二次函数的部分图象如图所示,则下列选项错误的是( )
A.若,是图象上的两点,则
B.
C.方程有两个不相等的实数根
D.当时,y随x的增大而减小
17.(2021·北京中考真题)如图,用绳子围成周长为的矩形,记矩形的一边长为,它的邻边长为,矩形的面积为.当在一定范围内变化时,和都随的变化而变化,则与与满足的函数关系分别是( )
A.一次函数关系,二次函数关系 B.反比例函数关系,二次函数关系
C.一次函数关系,反比例函数关系 D.反比例函数关系,一次函数关系
18.(2020·湖南长沙·中考真题)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:(a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )
A.3.50分钟 B.4.05分钟 C.3.75分钟 D.4.25分钟
19.(2020·安徽中考真题)如图和都是边长为的等边三角形,它们的边在同一条直线上,点,重合,现将沿着直线向右移动,直至点与重合时停止移动.在此过程中,设点移动的距离为,两个三角形重叠部分的面积为,则随变化的函数图像大致为( )
A. B.
C. D.
20.(2019·台湾中考真题)如图,坐标平面上有一顶点为的抛物线,此抛物线与方程式的图形交于、两点,为正三角形.若点坐标为,则此抛物线与轴的交点坐标为何?( )
A. B. C. D.
21.(2019·江苏中考真题)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是( )
A.18m2 B.m2 C.m2 D.m2
二、填空题
22.(2021·四川巴中·中考真题)y与x之间的函数关系可记为y=f(x).例如:函数y=x2可记为f(x)=x2.若对于自变量取值范围内的任意一个x,都有f(﹣x)=f(x),则f(x)是偶函数;若对于自变量取值范围内的任意一个x,都有f(﹣x)=﹣f(x),则f(x)是奇函数.例如:f(x)=x2是偶函数,f(x)是奇函数.若f(x)=ax2+(a﹣5)x+1是偶函数,则实数a=__________.
23.(2021·黑龙江牡丹江·中考真题)将抛物线y=x2﹣2x+3向左平移2个单位长度,所得抛物线为____.
24.(2021·广东中考真题)把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为___.
25.(2020·广西贵港·中考真题)如图,对于抛物线,,,给出下列结论:①这三条抛物线都经过点;②抛物线的对称轴可由抛物线的对称轴向右平移1个单位而得到;③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线的交点中,相邻两点之间的距离相等.其中正确结论的序号是_______________.
26.(2020·四川广安·中考真题)已知二次函数y=a(x-3)2+c(a,c为常数,a<0),当自变量x分别取,0,4时,所对应的函数值分别为,,,则,,的大小关系为________(用“<”连接).
27.(2020·四川中考真题)若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是_____.
28.(2020·内蒙古中考真题)在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_____.
29.(2020·上海中考真题)如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是____.
30.(2020·黑龙江朝鲜族学校中考真题)将抛物线y=(x-1)2-5关于y轴对称,再向右平移3个单位长度后顶点的坐标是_____.
31.(2020·黑龙江牡丹江·中考真题)将抛物线向上平移3个单位长度后,经过点,则的值是________.
32.(2019·黑龙江中考真题)二次函数的最大值是__________.
33.(2019·四川宜宾·中考真题)将抛物线的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为_______.
34.(2019·四川遂宁·中考真题)如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为_______.(填一般式)
35.(2019·浙江杭州·中考真题)某函数满足当自变量时,函数值;当自变量时,函数值,写出一个满足条件的函数表达式_____.
36.(2020·山东青岛·中考真题)抛物线(为常数)与轴交点的个数是__________.
37.(2021·湖北襄阳·中考真题)从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度(单位:)与它距离喷头的水平距离(单位:)之间满足函数关系式,喷出水珠的最大高度是______.
38.(2018·广西贺州·中考真题)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(,且x为整数)出售,可卖出件,若使利润最大,则每件商品的售价应为_______元.
三、解答题
39.(2021·江苏盐城·)已知抛物线经过点和.
(1)求、的值;
(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.
40.(2021·黑龙江鹤岗·中考真题)如图,抛物线与轴交于点和点,与轴交于点,连接,与抛物线的对称轴交于点,顶点为点.
(1)求抛物线的解析式;
(2)求的面积.
41.(2021·浙江中考真题)如图,已知经过原点的抛物线与轴交于另一点A(2,0).
(1)求的值和抛物线顶点的坐标;
(2)求直线的解析式.
42.(2021·辽宁大连·中考真题)某电商销售某种商品一段时间后,发现该商品每天的销售量y(单位:千克)和每千克的售价x(单位:元)满足一次函数关系(如图所示),其中,
(1)求y关于x的函数解析式;
(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?
43.(2020·黑龙江鹤岗·中考真题)如图,已知二次函数与轴交于、两点(点位于点的左侧),与轴交于点,已知的面积是6.
(1)求的值;
(2)在抛物线上是否存在一点,使.存在请求出坐标,若不存在请说明理由.
44.(2020·浙江温州·中考真题)已知抛物线经过点(1,﹣2),(﹣2,13).
(1)求a,b的值;
(2)若(5,),(m,)是抛物线上不同的两点,且,求m的值.
45.(2020·江苏徐州·中考真题)如图在平面直角坐标系中,一次函数的图像经过点、交反比例函数的图像于点,点在反比例函数的图像上,横坐标为,轴交直线于点,是轴上任意一点,连接、.
(1)求一次函数和反比例函数的表达式;
(2)求面积的最大值.
46.(2020·河北中考真题)用承重指数衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数与木板厚度(厘米)的平方成正比,当时,.
(1)求与的函数关系式.
(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为(厘米),.
①求与的函数关系式;
②为何值时,是的3倍?
(注:(1)及(2)中的①不必写的取值范围)
47.(2020·山东青岛·中考真题)某公司生产型活动板房成本是每个425元.图①表示型活动板房的一面墙,它由长方形和抛物线构成,长方形的长,宽,抛物线的最高点到的距离为.
(1)按如图①所示的直角坐标系,抛物线可以用表示,求该抛物线的函数表达式;
(2)现将型活动板房改造为型活动板房.如图②,在抛物线与之间的区域内加装一扇长方形窗户,点,在上,点,在抛物线上,窗户的成本为50元.已知,求每个型活动板房的成本是多少?(每个型活动板房的成本=每个型活动板房的成本+一扇窗户的成本)
(3)根据市场调查,以单价650元销售(2)中的型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个型活动板房.不考虑其他因素,公司将销售单价(元)定为多少时,每月销售型活动板房所获利润(元)最大?最大利润是多少?
参考答案
1.D
【分析】根据“左加右减,上加下减”的法则进行解答即可.
解:将抛物线y=(x﹣1)2+2向左平移3个单位长度所得抛物线解析式为:y=(x﹣1+3)2+2,即y=(x+2)2+2;
再向下平移4个单位为:y=(x+2)2+2﹣4,即y=(x+2)2﹣2=x2+4x+2.
故选:D.
【点拨】本题考查的是二次函数的图象与几何变换,熟知二次函数图象平移的法则是解答此题的关键.
2.B
【分析】根据抛物线图像的平移规律“左加右减,上加下减”即可确定平移后的抛物线解析式.
解:将抛物线向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为,
故选B.
【点拨】本题考查了二次函数的平移规律,熟练掌握其平移规律是解题的关键.
3.D
【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值.
解:∵在二次函数中,a=2>0,顶点坐标为(4,6),
∴函数有最小值为6.
故选:D.
【点拨】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值.
4.D
【分析】由与x轴的交点和中点公式求对称轴判断选项A;结合函数图象判断选项B;令x=-1,判断选项C;令x=1,判断选项D,即可解答.
解:A、对称轴为:直线 ,故选项A正确,不符合题意;
B、由函数图象知,当-1
∴a +c=b,故选项C正确,不符合题意;
D、由图可知:当x=1时,y=a+b+c<0
∴a+b<-c,故选项D错误,不符合题意;
故选:D.
【点拨】本题主要考查了二次函数对称性、二次函数图象与系数之间的关系和二次函数图象上点的坐标特征,解题的关键理解函数图象与不等式之间以及方程的关系.
5.D
【分析】根据一次函数图像经过的象限以及与坐标轴的交点可知:,由此可知二次函数开口方向,坐标轴情况,依此判断即可.
解:观察一次函数图像可知,
∴二次函数开口向下,
对称轴,
故选:D.
【点拨】本题主要考查一次函数的图像以及二次函数的图像,根据一次函数图像经过的象限以及与坐标轴的交点情况判断a、b的正负是解题的关键.
6.D
【分析】根据二次函数的图象与性质即可依次判断.
解:由图可得开口向上,故a>0,A错误;
∵解析式为,故对称轴为直线x=-2,D正确
∵
∴A点坐标为(-3,0),故B错误;
由图可知当时,y随x的增大而减小,故C错误;
故选D.
【点拨】此题主要考查二次函数的图象与性质,解题的关键是熟知二次函数顶点式的特点.
7.A
【分析】先利用待定系数法求出抛物线解析式,再求函数值即可.
解:∵抛物线经过点、,且与y轴交于点,
∴,
解方程组得,
∴抛物线解析式为,
当时,.
故选择A.
【点拨】本题考查待定系数法求抛物线解析式,和函数值,掌握系数法求抛物线解析式方法和函数值求法是解题关键.
8.B
【分析】连接AB,OM,根据二次函数图像的对称性把阴影图形的面积转化为平行四边形ABOM面积求解即可.
解:设平移后的抛物线与对称轴所在的直线交于点M,连接AB,OM.
由题意可知,AM=OB,
∵
∴OA=1,OB=AM=2,
∵抛物线是轴对称图形,
∴图中两个阴影部分的面积和即为四边形ABOM的面积,
∵,,
∴四边形ABOM为平行四边形,
∴.
故选:B.
【点拨】此题考查了二次函数图像的对称性和阴影面积的求法,解题的关键是根据二次函数图像的对称性转化阴影图形的面积.
9.B
【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案.
解:∵的顶点坐标为(0,0)
∴将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),
∴所得抛物线对应的函数表达式为,
故选B
【点拨】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键.
10.B
【分析】根据二次函数的性质,可知二次函数的开口向上,进而即可求解.
解:∵二次函数的对称轴为y轴,当时,y随x增大而增大,
∴二次函数的图像开口向上,
∴a-1>0,即:,
故选B.
【点拨】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数的关系,是解题的关键.
11.D
【分析】由直线l:y=4,化简抛物线,令,利用判别式,解出,由对称轴在y轴右侧可求即可.
解:∵直线l过点(0,4)且与y轴垂直,
直线l:y=4,
,
∴,
∵二次函数(其中x是自变量)的图像与直线l有两个不同的交点,
∴,
,
∴,
又∵对称轴在y轴右侧,
,
∴,
∴0<a<4.
故选择D.
【点拨】本题考查二次函数与直线的交点问题,抛物线对称轴,一元二次方程两个不等实根,根的判别式,掌握二次函数与直线的交点问题转化为一元二次方程实根问题,根的判别式,抛物线对称轴公式是解题关键.
12.D
【分析】把代入四个函数解析式,解方程即可得到答案.
解:当
<,
原方程没有实数解,
没有零点,故不符合题意,
当
显然,方程没有解,
所以没有零点,故不符合题意,
当
显然方程无解,
所以没有零点,故不符合题意,
当
所以有两个零点,故符合题意,
故选
【点拨】本题考查的是函数的零点,即函数与轴的交点的情况,掌握令,再解方程是解题的关键.
13.C
【分析】分别令x(4-x)的值为5,4,3,得到一元二次方程后,利用根的判别式确定方程的根有几个,即可得到点P的个数.
解:当b=5时,令x(4-x)=5,整理得:x2-4x+5=0,△=(-4)2-4×5=-6<0,因此点P的个数为0,甲的说法正确;
当b=4时,令x(4-x)=4,整理得:x2-4x+4=0,△=(-4)2-4×4=0,因此点P有1个,乙的说法正确;
当b=3时,令x(4-x)=3,整理得:x2-4x+3=0,△=(-4)2-4×3=4>0,因此点P有2个,丙的说法不正确;
故选:C.
【点拨】本题考查二次函数与一元二次方程,解题的关键是将二次函数与直线交点个数,转化成一元二次方程根的判别式.
14.B
【分析】根据抛物线的开口向上,得到a>0,由于抛物线与y轴交于负半轴,得到c<0,于是得到ac<0,故①正确;根据抛物线的对称轴为直线x=−,于是得到2a+b=0,当x=-1时,得到故②正确;把x=2代入函数解析式得到4a+2b+c<0,故③错误;抛物线与x轴有两个交点,也就是它所对应的方程有两个不相等的实数根,即可得出③正确根据二次函数的性质当x>1时,y随着x的增大而增大,故④错误.
解:①∵抛物线开口向上与y轴交于负半轴,
∴a>0,c<0
∴ac<0
故①正确;
②∵抛物线的对称轴是x=1,
∴
∴b=-2a
∵当x=-1时,y=0
∴0=a-b+c
∴3a+c=0
故②正确;
③∵抛物线与x轴有两个交点,即一元二次方程有两个不相等的实数解
∴
∴
故③正确;
④当-1<x<1时,y随x的增大而减小,当x>1时y随x的增大而增大.
故④错误
所以正确的答案有①、②、③共3个
故选:B
【点拨】本题考查了二次函数的图象与系数的关系、二次函数的性质、二次函数与x轴的交点,正确识别图象,并逐一分析各结论是解题的关键.
15.B
【分析】由题意可得方程的两个根是﹣3,1,方程在y的基础上加m,可以理解为二次函数的图象沿着y轴平移m个单位,由此判断加m后的两个根,即可判断选项.
解:二次函数的图象经过与两点,即方程的两个根是﹣3和1,
可以看成二次函数y的图象沿着y轴平移m个单位,得到一个根3,
由1到3移动2个单位,可得另一个根为﹣5.由于0<n<m,
可知方程的两根范围在﹣5~﹣3和1~3,
由此判断B符合该范围.
故选B.
【点拨】本题考查二次函数图象与一元二次方程的综合,关键在于方程加减任意数值可理解为在图像上进行平移.
16.D
【分析】根据二次函数的图象与性质(对称性、增减性)、二次函数与一元二次方程的联系逐项判断即可得.
解:由函数的图象可知,二次函数的对称轴为
则当时,y随x的增大而增大;当时,y随x的增大而减小,选项D错误
由对称性可知,时的函数值与时的函数值相等
则当时,函数值为
,则选项A正确
又当时,
,即,选项B正确
由函数的图象可知,二次函数的图象与x轴有两个交点
则将二次函数的图象向上平移2个单位长度得到的二次函数与x轴也有两个交点
因此,关于x的一元二次方程有两个不相等的实数根
即方程有两个不相等的实数根,选项C正确
故选:D.
【点拨】本题考查了二次函数的图象与性质(对称性、增减性)、二次函数与一元二次方程的联系,掌握理解二次函数的图象与性质是解题关键.
17.A
【分析】由题意及矩形的面积及周长公式可直接列出函数关系式,然后由函数关系式可直接进行排除选项.
解:由题意得:
,整理得:,
,
∴y与x成一次函数的关系,S与x成二次函数的关系;
故选A.
【点拨】本题主要考查一次函数与二次函数的应用,熟练掌握一次函数与二次函数的应用是解题的关键.
18.C
【分析】将图中三个坐标代入函数关系式解出a和b,再利用对称轴公式求出即可.
解:将(3,0.8)(4,0.9)(5,0.6)代入得:
②-①和③-②得
⑤-④得,解得a=﹣0.2.
将a=﹣0.2.代入④可得b=1.5.
对称轴=.
故选C.
【点拨】本题考查二次函数的三点式,关键在于利用待定系数法求解,且本题只需求出a和b即可得出答案.
19.A
【分析】根据图象可得出重叠部分三角形的边长为x,根据特殊角三角函数可得高为,由此得出面积y是x的二次函数,直到重合面积固定,再往右移动重叠部分的边长变为(4-x),同时可得
解:C点移动到F点,重叠部分三角形的边长为x,由于是等边三角形,则高为,面积为y=x··=,
B点移动到F点,重叠部分三角形的边长为(4-x),高为,面积为
y=(4-x)··=,
两个三角形重合时面积正好为.
由二次函数图象的性质可判断答案为A,
故选A.
【点拨】本题考查三角形运动面积和二次函数图像性质,关键在于通过三角形面积公式结合二次函数图形得出结论.
20.B
【分析】设,,,可知,再由等边三角形的性质可知,设抛物线解析式,将点代入解析式即可求,进而求解.
解:设,,
点坐标为,
,
为正三角形,
, ,
设抛物线解析式,
,
,
,
当时,;
故选:B.
【点拨】本题考查二次函数的图象及性质,等边三角形的性质;结合函数图象将等边三角形的边长转化为点的坐标是解题的关键.
21.C
【分析】过点C作CE⊥AB于E,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,则
∠BCE=∠BCD-∠DCE=30°,BC=12-x,由直角三角形的,性质得出得出,又梯形面积公式求出梯形ABCD的面积S与x之间的函数关系式,根据二次函数的性质求解.
解:如图,过点C作CE⊥AB于E,
则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°, 则∠BCE=∠BCD-∠DCE=30°,BC=12-x,
在Rt△CBE中,∵∠CEB=90°,
∴梯形ABCD面积
∴当x=4时,S最大=24.
即CD长为4 m时,使梯形储料场ABCD的面积最大为24 m2;
故选C.
【点拨】此题考查了梯性质、矩形的性质、含30°角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键
22.5
【分析】由f(x)=ax2+(a-5)x+1是偶函数,得a(-x)2+(a-5)•(-x)+1=ax2+(a-5)x+1,解得a=5.
解:∵f(x)=ax2+(a-5)x+1是偶函数,
∴对于自变量取值范围内的任意一个x,都有f(-x)=f(x),即a(-x)2+(a-5)•(-x)+1=ax2+(a-5)x+1,
∴(10-2a)x=0,可知10-2a=0,
∴a=5,
故答案为:5.
【点拨】本题考查新定义:偶函数与奇函数,解题的关键是理解偶函数定义,列出a(-x)2+(a-5)•(-x)+1=ax2+(a-5)x+1.
23.y=x2+2x+3
【分析】把y=x2﹣2x+3配方得,把顶点向左平移2个单位长度即可得所求抛物线的解析式.
解:把y=x2﹣2x+3配方得,其顶点坐标为(1,2),抛物线的顶点向左平移2个单位长度后为(-1,2),所以所得抛物线的解析式为,即y=x2+2x+3
故答案为:y=x2+2x+3.
【点拨】本题考查了抛物线的平移,抛物线的一般式化顶点式,关键抓住抛物线的顶点平移.
24.
【分析】直接根据“上加下减,左加右减”进行计算即可.
解:抛物线向左平移1个单位长度,
再向下平移3个单位长度,
得到的抛物线的解析式为:,
即:
故答案为:.
【点拨】本题主要考查函数图像的平移,熟记函数图像的平移方式“上加下减,左加右减”是解题的关键.
25.①②④
【分析】根据抛物线图象性质及配方法解题.
解:将分别代入抛物线,,中,可知,这三条抛物线都经过点C,故①正确;
抛物线的对称轴为,
抛物线的对称轴为,可由向右平移1个单位而得到,故②正确;
抛物线的顶点为A
抛物线的顶点为B
抛物线的顶点为C
,
三条抛物线的顶点不在同一条直线上,故③错误;
将分别代入三条抛物线,得0或1,0或2,0或3,
可知,相邻两点之间的距离相等,故④正确,
综上所述,正确的是①②④,
故选:①②④.
【点拨】本题考查二次函数的性质,其中涉及将一般式化为顶点式等知识,是重要考点,难度较易,掌握相关知识是解题关键.
26.<<
【分析】根据题意可得该二次函数图象的开口向下,对称轴为直线x=3,从而得出当x<3时,y随x的增大而增大,点(4,)关于对称轴直线x=3的对称点为(2,),然后比较横坐标的大小即可得出结论.
解:∵二次函数y=a(x-3)2+c(a,c为常数,a<0),
∴该二次函数图象的开口向下,对称轴为直线x=3
∴当x<3时,y随x的增大而增大,点(4,)关于对称轴直线x=3的对称点为(2,)
∵0<2<<3
∴<<
故答案为:<<.
【点拨】此题考查的是二次函数图象的性质,掌握抛物线对称轴两侧的增减性的判断方法是解题关键.
27.
【分析】由已知等式表示出y2,代入s中利用二次函数最值即可确定出s范围.
解:由x+y2=3,得:y2=﹣x+3≥0,
∴x≤3,
代入得:s=x2+8y2=x2+8(﹣x+3)=x2﹣8x+24=(x﹣4)2+8,
当x=3时,s=(3﹣4)2+8=9,
∴.
故答案为:.
【点拨】本题主要考查二次函数的性质,关键是根据题意进行代入消元,然后利用二次函数的性质进行求解即可.
28.4
【分析】通过A、B两点得出对称轴,再根据对称轴公式算出b,由此可得出二次函数表达式,从而算出最小值即可推出n的最小值.
解:∵A、B的纵坐标一样,
∴A、B是对称的两点,
∴对称轴,即,
∴b=﹣4.
.
∴抛物线顶点(2,﹣3).
满足题意n得最小值为4,
故答案为4.
【点拨】本题考查二次函数对称轴的性质及顶点式的变形,关键在于根据对称轴的性质从题意中判断出对称轴.
29.y=x2+3.
【分析】直接根据抛物线向上平移的规律求解.
解:抛物线y=x2向上平移3个单位得到y=x2+3.
故答案为:y=x2+3.
【点拨】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
30.(2,-5)
【分析】先求出抛物线的顶点坐标,再根据题意进行变换即可求解.
解:抛物线y=(x-1)2-5的顶点为(1,-5),
∴关于y轴对称的坐标为(-1,-5),再向右平移3个单位长度后的坐标为(2,-5),
故答案为:(2,-5) .
【点拨】此题主要考查抛物线顶点,解题的关键是熟知二次函数顶点式的特点.
31.-5
【分析】根据二次函数的平移得出平移后的表达式,再将点代入,得到,最后将变形求值即可.
解:将抛物线向上平移3个单位长度后,
表达式为:,
∵经过点,代入,
得:,
则==2×3-11=-5.
故答案为:-5.
【点拨】本题考查了二次函数的平移,代数式求值,解题的关键是得出平移后的表达式.
32.8
【分析】二次函数的顶点式在x=h时有最值,a>0时有最小值,a<0时有最大值,题中函数 ,故其在时有最大值.
解:∵,
∴有最大值,
当时,有最大值8.
故答案为8.
【点拨】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.
33..
【分析】直接利用二次函数的平移规律进而得出答案.
解:将抛物线的图象,向左平移1个单位,再向下平移2个单位,
所得图象的解析式为:.
故答案为.
【点拨】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.
34.
【分析】先由题意得到,再设设,由勾股定理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.
解:点,反比例函数经过点B,则点,
则,,
∴,
设,则,,
由勾股定理得:,
解得:,故点,
将点C、G、A坐标代入二次函数表达式得:,解得:,
故答案为.
【点拨】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.
35.或或等.
【分析】由于题中没有指定是什么具体的函数,可以从一次函数,二次函数等方面考虑,只要符合题中的两个条件即可.
解:符合题意的函数解析式可以是或或等,(本题答案不唯一)
故答案为如或或等.
【点拨】本题考查一次函数、二次函数的解析式,解题的关键是知道一次函数、二次函数的定义.
36.2
【分析】求出∆的值,根据∆的值判断即可.
解:∵∆=4(k-1)2+8k=4k2+4>0,
∴抛物线与轴有2个交点.
故答案为:2.
【点拨】本题考查了二次函数与坐标轴的交点问题,二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象与x轴的交点横坐标是一元二次方程ax2+bx+c=0的根.当∆=0时,二次函数与x轴有一个交点,一元二次方程有两个相等的实数根;当∆>0时,二次函数与x轴有两个交点,一元二次方程有两个不相等的实数根;当∆<0时,二次函数与x轴没有交点,一元二次方程没有实数根.
37.3
【分析】把二次函数化为顶点式,进而即可求解.
解:∵,
∴当x=1时,,
故答案是:3.
【点拨】本题主要考查二次函数的图像和性质,掌握二次函数的顶点式,是解题的关键.
38.25
【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值.
解:设利润为w元,
则w=(x-20)(30-x)=-(x-25)2+25,
∵20≤x≤30,
∴当x=25时,二次函数有最大值25,
故答案是:25.
【点拨】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.
39.(1),;(2)
【分析】(1)将点和,代入解析式求解即可;
(2)将,按题目要求平移即可.
解:(1)将点和代入抛物线得:
解得:
∴,
(2)原函数的表达式为:,
向上平移2个单位长度,再向右平移1个单位长度,得:
平移后的新函数表达式为:
即
【点拨】本题考查了待定系数法确定解析式,顶点式的函数平移,口诀:“左加右减,上加下减”,正确的计算和牢记口诀是解题的关键.
40.(1)抛物线的解析式为;(2)
【分析】(1)把点A、B的坐标代入求解即可;
(2)由(1)可得,进而可得,然后问题可求解.
解:(1)把点和点代入抛物线可得:
,解得:,
∴抛物线的解析式为;
(2)由(1)可得抛物线的解析式为,
∴,
∴,
∴.
【点拨】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.
41.(1),M (1,-2);(2)
【分析】(1)将A(2,0)代入抛物线的解析式,可求得m的值,再配成顶点式即可求解;
(2)利用待定系数法即可求得直线AM的解析式.
解:解 (1)∵抛物线过点A(2,0),
,解得,
,
,
∴顶点M的坐标是(1,-2);
(2)设直线AM的解析式为,
∵图象过A(2,0),M (1,-2),
,解得,
∴直线AM的解析式为.
【点拨】本题考查了待定系数法求函数解析式,二次函数的图象和性质,解题的关键是灵活运用所学知识解决问题.
42.(1)y关于x的函数解析式为;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.
【分析】(1)由图象易得和,然后设y关于x的函数解析式为,进而代入求解即可;
(2)设该电商每天所获利润为w元,由(1)及题意易得,然后根据二次函数的性质可进行求解.
解:(1)设y关于x的函数解析式为,则由图象可得和,代入得:
,解得:,
∴y关于x的函数解析式为;
(2)设该电商每天所获利润为w元,由(1)及题意得:
,
∴-2<0,开口向下,对称轴为,
∵,
∴当时,w有最大值,即为;
答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.
【点拨】本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.
43.(1);(2)存在,点的坐标为或或.
【分析】(1)根据求出A,B,C的坐标,再由的面积是6得到关于a的方程即可求解;
(2)根据得到点的纵坐标为±3,分别代入解析式即可求解.
解:(1)∵,
令,则,
∴,
令,即
解得,
由图象知:
∴,
∵
∴
解得:,(舍去);
(2)∵,
∴,
∵.
∴点的纵坐标为±3,
把代入得,
解得或,
把代入得,
解得或,
∴点的坐标为或或.
【点拨】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的应用.
44.(1);(2)
【分析】(1)将点的坐标分别代入解析式即可求得a,b的值;
(2)将(5,),(m,)代入解析式,联立即可求得m的值.
解:(1)∵抛物线经过点(1,-2),(-2,13),
∴,解得,
∴a的值为1,b的值为-4;
(2)∵(5,),(m,)是抛物线上不同的两点,
∴,解得或(舍去)
∴m的值为-1.
【点拨】本题主要考查二次函数性质,用待定系数法求二次函数,正确解出方程组求得未知数是解题的关键.
45.(1);(2)
【分析】(1)利用点、求解一次函数的解析式,再求的坐标,再求反比例函数解析式;
(2)设 则再表示的长度,列出三角形面积与的函数关系式,利用函数的性质可得答案.
解:(1)设直线AB为
把点、代入解析式得:
解得:
直线为
把代入得:
把代入:
,
(2)设 轴,
则 由<<,
即当时,
【点拨】本题考查的是利用待定系数法求解一次函数与反比例函数的解析式,以及利用二次函数的性质求解面积的最值,掌握以上知识是解题的关键.
46.(1);(2)①;②.
【分析】(1)设W=kx2,利用待定系数法即可求解;
(2)①根据题意列出函数,化简即可;②根据题意列出方程故可求解.
解:(1)设W=kx2,
∵时,
∴3=9k
∴k=
∴与的函数关系式为;
(2)①∵薄板的厚度为xcm,木板的厚度为6cm
∴厚板的厚度为(6-x)cm,
∴Q=
∴与的函数关系式为;
②∵是的3倍
∴-4x+12=3×
解得x1=2,x2=-6(不符题意,舍去)
经检验,x=2是原方程的解,
∴x=2时,是的3倍.
【点拨】此题主要考查函数与方程的应用,解题的关键是根据题意找到等量关系列出函数或方程求解.
47.(1)(2)500(3)n=620时,w最大=19200元
【分析】(1)根据图形及直角坐标系可得到D,E的坐标,代入即可求解;
(2)根据N点与M点的横坐标相同,求出N点坐标,再求出矩形FGMN的面积,故可求解;
(3)根据题意得到w关于n的二次函数,根据二次函数的性质即可求解.
解:(1)由题可知D(2,0),E(0,1)
代入到
得
解得
∴抛物线的函数表达式为;
(2)由题意可知N点与M点的横坐标相同,把x=1代入,得y=
∴N(1,)
∴MN=m,
∴S四边形FGMN=GM×MN=2×=,
则一扇窗户的价格为×50=75元
因此每个B型活动板的成本为425+75=500元;
(3)根据题意可得w=(n-500)(100+20×)=-2(n-600)2+20000,
∵一个月最多生产160个,
∴100+20×≤160
解得n≥620
∵-2<0
∴n≥620时,w随n的增大而减小
∴当n=620时,w最大=19200元.
【点拨】此题主要考查二次函数的综合运用,解题的关键是熟知待定系数法、二次函数的图像与性质.
专题23.14 《旋转》中考真题专练(培优篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版): 这是一份专题23.14 《旋转》中考真题专练(培优篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共59页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题23.13 《旋转》中考真题专练(巩固篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版): 这是一份专题23.13 《旋转》中考真题专练(巩固篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共52页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题23.12 《旋转》中考真题专练(基础篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版): 这是一份专题23.12 《旋转》中考真题专练(基础篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。