还剩28页未读,
继续阅读
高一数学人教A版必修3课件:2.3《变量间的相关关系》(第二课时)
展开
这是一份高一数学人教A版必修3课件:2.3《变量间的相关关系》(第二课时),共36页。
变量间的相关关系2.3.1-2小明,你数学成绩不太好,物理怎么样?也不太好啊.学不好数学,物理也是学不好的?????...你认为老师的说法对吗?事实上,我们在考察数学成绩对物理成绩影响的同时,还必须考虑到其他的因素:爱好,努力程度如果单纯从数学对物理的影响来考虑,就是考虑这两者之间的相关关系我们在生活中,碰到很多相关关系的问题:物理成绩数学成绩学习兴趣花费时间其他因素商品销售收入K×广告支出经费?粮食产量K×施肥量?人体脂肪含量K×年龄?两个变量之间的相关关系 两个变量间存在着某种关系,带有不确定性(随机性),不能用函数关系精确地表达出来,我们说这两个变量具有相关关系.相关关系—当自变量取值一定,因变量的取值带有一定的随机性( 非确定性关系)函数关系---函数关系指的是自变量和因变量之间的关系是相互确定的.注:相关关系和函数关系的异同点相同点:两者均是指两个变量间的关系不同点:函数关系是一种确定关系, 相关关系是一种非确定的关系。对相关关系的理解以上种种问题中的两个变量之间的相关关系,我们都可以根据自己的生活,学习经验作出相应的判断,“规律是经验的总结”,不管你多有经验,只凭经验办事,还是很容易出错的,因此在寻找变量间的相关关系时,我们需要一些更为科学的方法来说明问题.在寻找变量间的相关关系时,统计同样发挥了非常重要的作用,我们是通过收集大量的数据,对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断.下面我们通过具体的例子来分析【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.根据上述数据,人体的脂肪含量与年龄之间有怎样的关系?思考1:对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?思考2:为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗? 思考3:你能描述一下散点图的含义吗? 在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图. 散点图1).如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.2).如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系。说明散点图:用来判断两个变量是否具有相关关系.观察散点图的大致趋势, 两个变量的散点图中点的分布的位置是从左下角到右上角的区域,我们称这种相关关系为正相关。思考4:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点? 散点图中的点散布在从左上角到右下角的区域.思考5:你能列举一些生活中的变量成正相关或负相关的实例吗? 如高原含氧量与海拔高度的相关关系,海平面以上,海拔高度越高,含氧量越少。 作出散点图发现,它们散布在从左上角到右下角的区域内。又如汽车的载重和汽车每消耗1升汽油所行使的平均路程,称它们成负相关.O如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线就叫做回归直线。 这条回归直线的方程,简称为回归方程。三、回归直线 整体上最接近 方案一:采用测量的方法:先画一条直线,测量出各点到它的距离,然后移动直线,到达一个使距离之和最小的位置,测量出此时直线的斜率和截距,就得到回归方程。四、如何具体的求出这个回归方程呢?方案二: 在图中选取两点画直线,使得直线两侧的点的个数基本相同。三、如何具体的求出这个回归方程呢?方案三: 在散点图中多取几组点,确定几条直线的方程,分别求出各条直线的斜率和截距的平均数,将这两个平均数作为回归方程的斜率和截距。三、如何具体的求出这个回归方程呢?上述三种方案均有一定的道理,但可靠性不强,我们回到回归直线的定义。求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与直线的距离最小”。如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线就叫做回归直线。回归直线 实际上,求回归直线的关键是如何用数学的方法来刻画“从整体上看,各点到此直线的距离最小”.以上公式的推导较复杂,故不作推导,但它的原理较为简单:即各点到该直线的距离的平方和最小,这一方法叫最小二乘法。37.1%(0.577×65-0.448= 37.1%)若某人65岁,可预测他体内脂肪含量在37.1%(0.577×65-0.448= 37.1%)附近的可能性比较大。 但不能说他体内脂肪含量一定是37.1%原因:线性回归方程中的截距和斜率都是通过样本计算的,存在随机误差,这种误差可以导致预测结果的偏差,即使截距斜率没有误差,也不可能百分百地保证对应于x,预报值Y能等于实际值y例3:有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:1、画出散点图;2、从散点图中发现气温与热饮销售杯数之间关系的一般规律;3、求回归方程;4、如果某天的气温是2摄氏度,预测这天卖出的热饮杯数。1、散点图2、从图3-1看到,各点散布在从左上角到由下角的区域里,因此,气温与热饮销售杯数之间成负相关,即气温越高,卖出去的热饮杯数越少。3、从散点图可以看出,这些点大致分布在一条直线的附近,因此利用公式求出回归方程的系数。 Y= -2.352x+147.7674、当x=2时,Y=143.063 因此,某天的气温为2摄氏度时,这天大约可以卖出143杯热饮。练习:给出施化肥量对水稻产量影响的试验数据:(1)画出上表的散点图;(2)求出回归直线并且画出图形. 从而得回归直线方程是 解:(1)散点图(略).(2)表中的数据进行具体计算,列成以下表格.(图形略)故可得到小结1.求样本数据的线性回归方程,可按下列步骤进行:第四步,写出回归方程 2.回归方程被样本数据惟一确定,各样本点大致分布在回归直线附近.对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性. 3.对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的.因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程.总结基础知识框图表解变量间关系函数关系相关关系 散点图线形回归线形回归方程1、相关关系 (1)概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系。 (2)相关关系与函数关系的异同点。 相同点:两者均是指两个变量间的关系。 不同点:函数关系是一种确定关系,是一种因果系;相关关系是一种非确定的关系,也不一定是因果关系(但可能是伴随关系)。 (3)相关关系的分析方向。 在收集大量数据的基础上,利用统计分析,发现规律,对它们的关系作出判断。2、两个变量的线性相关 (1)回归分析 对具有相关关系的两个变量进行统计分析的方法叫回归分析。通俗地讲,回归分析是寻找相关关系中非确定关系的某种确定性。 (2)散点图 A、定义;B、正相关、负相关。 3、回归直线方程 注:如果关于两个变量统计数据的散点图呈现发散状,则这两个变量之间不具有相关关系.3、回归直线方程 (1)回归直线:观察散点图的特征,如果各点大致分布在一条直线的附近,就称两个变量之间具有线性相关的关系,这条直线叫做回归直线。(2)最小二乘法(3)利用回归直线对总体进行估计P94习题2.3 A组:2.作业:
变量间的相关关系2.3.1-2小明,你数学成绩不太好,物理怎么样?也不太好啊.学不好数学,物理也是学不好的?????...你认为老师的说法对吗?事实上,我们在考察数学成绩对物理成绩影响的同时,还必须考虑到其他的因素:爱好,努力程度如果单纯从数学对物理的影响来考虑,就是考虑这两者之间的相关关系我们在生活中,碰到很多相关关系的问题:物理成绩数学成绩学习兴趣花费时间其他因素商品销售收入K×广告支出经费?粮食产量K×施肥量?人体脂肪含量K×年龄?两个变量之间的相关关系 两个变量间存在着某种关系,带有不确定性(随机性),不能用函数关系精确地表达出来,我们说这两个变量具有相关关系.相关关系—当自变量取值一定,因变量的取值带有一定的随机性( 非确定性关系)函数关系---函数关系指的是自变量和因变量之间的关系是相互确定的.注:相关关系和函数关系的异同点相同点:两者均是指两个变量间的关系不同点:函数关系是一种确定关系, 相关关系是一种非确定的关系。对相关关系的理解以上种种问题中的两个变量之间的相关关系,我们都可以根据自己的生活,学习经验作出相应的判断,“规律是经验的总结”,不管你多有经验,只凭经验办事,还是很容易出错的,因此在寻找变量间的相关关系时,我们需要一些更为科学的方法来说明问题.在寻找变量间的相关关系时,统计同样发挥了非常重要的作用,我们是通过收集大量的数据,对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断.下面我们通过具体的例子来分析【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.根据上述数据,人体的脂肪含量与年龄之间有怎样的关系?思考1:对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?思考2:为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗? 思考3:你能描述一下散点图的含义吗? 在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图. 散点图1).如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.2).如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系。说明散点图:用来判断两个变量是否具有相关关系.观察散点图的大致趋势, 两个变量的散点图中点的分布的位置是从左下角到右上角的区域,我们称这种相关关系为正相关。思考4:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点? 散点图中的点散布在从左上角到右下角的区域.思考5:你能列举一些生活中的变量成正相关或负相关的实例吗? 如高原含氧量与海拔高度的相关关系,海平面以上,海拔高度越高,含氧量越少。 作出散点图发现,它们散布在从左上角到右下角的区域内。又如汽车的载重和汽车每消耗1升汽油所行使的平均路程,称它们成负相关.O如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线就叫做回归直线。 这条回归直线的方程,简称为回归方程。三、回归直线 整体上最接近 方案一:采用测量的方法:先画一条直线,测量出各点到它的距离,然后移动直线,到达一个使距离之和最小的位置,测量出此时直线的斜率和截距,就得到回归方程。四、如何具体的求出这个回归方程呢?方案二: 在图中选取两点画直线,使得直线两侧的点的个数基本相同。三、如何具体的求出这个回归方程呢?方案三: 在散点图中多取几组点,确定几条直线的方程,分别求出各条直线的斜率和截距的平均数,将这两个平均数作为回归方程的斜率和截距。三、如何具体的求出这个回归方程呢?上述三种方案均有一定的道理,但可靠性不强,我们回到回归直线的定义。求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与直线的距离最小”。如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线就叫做回归直线。回归直线 实际上,求回归直线的关键是如何用数学的方法来刻画“从整体上看,各点到此直线的距离最小”.以上公式的推导较复杂,故不作推导,但它的原理较为简单:即各点到该直线的距离的平方和最小,这一方法叫最小二乘法。37.1%(0.577×65-0.448= 37.1%)若某人65岁,可预测他体内脂肪含量在37.1%(0.577×65-0.448= 37.1%)附近的可能性比较大。 但不能说他体内脂肪含量一定是37.1%原因:线性回归方程中的截距和斜率都是通过样本计算的,存在随机误差,这种误差可以导致预测结果的偏差,即使截距斜率没有误差,也不可能百分百地保证对应于x,预报值Y能等于实际值y例3:有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:1、画出散点图;2、从散点图中发现气温与热饮销售杯数之间关系的一般规律;3、求回归方程;4、如果某天的气温是2摄氏度,预测这天卖出的热饮杯数。1、散点图2、从图3-1看到,各点散布在从左上角到由下角的区域里,因此,气温与热饮销售杯数之间成负相关,即气温越高,卖出去的热饮杯数越少。3、从散点图可以看出,这些点大致分布在一条直线的附近,因此利用公式求出回归方程的系数。 Y= -2.352x+147.7674、当x=2时,Y=143.063 因此,某天的气温为2摄氏度时,这天大约可以卖出143杯热饮。练习:给出施化肥量对水稻产量影响的试验数据:(1)画出上表的散点图;(2)求出回归直线并且画出图形. 从而得回归直线方程是 解:(1)散点图(略).(2)表中的数据进行具体计算,列成以下表格.(图形略)故可得到小结1.求样本数据的线性回归方程,可按下列步骤进行:第四步,写出回归方程 2.回归方程被样本数据惟一确定,各样本点大致分布在回归直线附近.对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性. 3.对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的.因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程.总结基础知识框图表解变量间关系函数关系相关关系 散点图线形回归线形回归方程1、相关关系 (1)概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系。 (2)相关关系与函数关系的异同点。 相同点:两者均是指两个变量间的关系。 不同点:函数关系是一种确定关系,是一种因果系;相关关系是一种非确定的关系,也不一定是因果关系(但可能是伴随关系)。 (3)相关关系的分析方向。 在收集大量数据的基础上,利用统计分析,发现规律,对它们的关系作出判断。2、两个变量的线性相关 (1)回归分析 对具有相关关系的两个变量进行统计分析的方法叫回归分析。通俗地讲,回归分析是寻找相关关系中非确定关系的某种确定性。 (2)散点图 A、定义;B、正相关、负相关。 3、回归直线方程 注:如果关于两个变量统计数据的散点图呈现发散状,则这两个变量之间不具有相关关系.3、回归直线方程 (1)回归直线:观察散点图的特征,如果各点大致分布在一条直线的附近,就称两个变量之间具有线性相关的关系,这条直线叫做回归直线。(2)最小二乘法(3)利用回归直线对总体进行估计P94习题2.3 A组:2.作业:
相关资料
更多