高端精品高中数学一轮专题-二项分布与正态分布(讲)教案
展开二项分布与正态分布
核心素养立意下的命题导向
1.结合古典概型,考查条件概率、独立事件的概率的计算,凸显数学运算的核心素养.
2.结合n次独立重复试验的概念,考查随机变量的二项分布,凸显数学抽象的核心素养.
3.结合频率分布直方图,考查正态分布曲线的特点、3σ原则的应用,凸显直观想象的核心素养.
[理清主干知识]
1.条件概率
(1)条件概率的定义
设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率.
(2)条件概率的性质
①条件概率具有一般概率的性质,即0≤P(B|A)≤1.
②如果B,C是两个互斥事件,则P((B∪C)|A)=P(B|A)+P(C|A).
2.相互独立事件的概率
(1)相互独立事件的定义及性质
①定义:设A,B是两个事件,若P(AB)=P(A)·P(B),则称事件A与事件B相互独立.
②性质:若事件A与B相互独立,那么A与,与B,与也都相互独立.
(2)独立重复试验概率公式
在相同条件下重复做的n次试验称为n次独立重复试验,若用Ai(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…An)=P(A1)P(A2)…P(An).
(3)二项分布的定义
在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,则P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.
3.正态分布
(1)正态曲线的定义
函数φμ,σ(x)=e,x∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,称φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.
(2)正态分布的定义及表示
如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=φμ,σ(x)dx,则称随机变量X服从正态分布,记作N(μ,σ2).
(3)正态曲线的特点
①曲线位于x轴的上方,与x轴不相交.
②曲线是单峰的,它关于直线x=μ对称.
③曲线在x=μ处达到峰值.
④曲线与x轴之间的面积为1.
⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿着x轴平移.
⑥当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.
(4)正态分布中的3σ原则
①P(μ-σ<X≤μ+σ)=0.6826.
②P(μ-2σ<X≤μ+2σ)=0.9544.
③P(μ-3σ<X≤μ+3σ)=0.9974.
考点一 事件的相互独立性及条件概率
考法(一) 条件概率
[例1] (1)现有3道理科题和2道文科题共5道题,若不放回地依次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为( )
A. B.
C. D.
(2)2020年疫情的到来给人们生活学习等各方面带来种种困难.为了顺利迎接高考,某省制定了周密的毕业年级复学计划.为了确保安全开学,全省组织毕业年级学生进行核酸检测的筛查.学生先到医务室进行咽拭子检验,检验呈阳性者需到防疫部门做进一步检测.已知随机抽一人检验呈阳性的概率为0.2%,且每个人检验是否呈阳性相互独立,假设该疾病患病率为0.1%,且患病者检验呈阳性的概率为99%.若某人检验呈阳性,则他确实患病的概率为( )
A.0.99% B.99%
C.49.5% D.36.5%
[方法技巧] 条件概率的3种求法
定义法 | 先求P(A)和P(AB),再由P(B|A)=求P(B|A) |
基本 事件法 | 借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件AB所包含的基本事件数n(AB),得P(B|A)= |
缩样法 | 缩小样本空间的方法,就是去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解,它能化繁为简 |
考法(二) 事件的相互独立性
[例2] 11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
[方法技巧]
利用相互独立事件求复杂事件概率的解题思路
(1)将待求复杂事件转化为几个彼此互斥简单事件的和.
(2)将彼此互斥简单事件中的简单事件,转化为几个已知(易求)概率的相互独立事件的积事件.
(3)代入概率的积、和公式求解.
[针对训练]
1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=( )
A. B.
C. D.
2.一台设备由三个部件构成,假设在一天的运转中,部件1,2,3需要调整的概率分别为0.1,0.2,0.3,各部件的状态相互独立.
(1)求设备在一天的运转中,部件1,2中至少有1个需要调整的概率;
(2)记设备在一天的运转中需要调整的部件个数为X,求X的分布列及数学期望.
考点二 独立重复试验与二项分布
[典例] “大湖名城,创新高地”的合肥,历史文化积淀深厚,民俗和人文景观丰富,科教资源众多,自然风光秀美,成为中小学生“研学游”的理想之地.为了将来更好地推进“研学游”项目,某旅游学校一位实习生在某旅行社实习期间,把“研学游”项目分为科技体验游、民俗人文游、自然风光游三种类型,并在前几年该旅行社接待的全省高一学生“研学游”学校中,随机抽取了100所学校,统计如下:
研学游类型 | 科技体验游 | 民俗人文游 | 自然风光游 |
学校数 | 40 | 40 | 20 |
该实习生在明年省内有意向组织高一“研学游”的学校中,随机抽取了3所学校,并以统计的频率代替学校选择研学游类型的概率(假设每所学校在选择研学游类型时仅选择其中一类,且不受其他学校选择结果的影响).
(1)若这3所学校选择的研学游类型是“科技体验游”和“自然风光游”,求这两种类型都有学校选择的概率;
(2)设这3所学校中选择“科技体验游”的学校数为随机变量X,求X的分布列与数学期望.
[方法技巧]
与二项分布有关的期望、方差的求法
(1)求随机变量ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B(n,p),则用公式E(ξ)=np,D(ξ)=np(1-p)求解,可大大减少计算量.
(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E(aξ+b)=aE(ξ)+b以及E(ξ)=np求出E(aξ+b),同样还可求出D(aξ+b).
[针对训练]
一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列及数学期望.
考点三 正态分布
[典例] 为提高城市居民生活幸福感,某城市公交公司大力确保公交车的准点率,减少居民乘车候车时间,为此,该公司对某站台乘客的候车时间进行统计.乘客候车时间受公交车准点率、交通拥堵情况、节假日人流量增大等情况影响,在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,乘客候车时间随机变量X满足正态分布N(μ,σ2).在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,调查了大量乘客的候车时间,经过统计得到如图频率分布直方图.
(1)在直方图各组中,以该组区间的中点值代表该组中的各个值,试估计μ,σ2的值;
(2)在统计学中,发生概率低于千分之三的事件叫小概率事件,一般认为,在正常情况下,一次试验中,小概率事件是不可能发生的.在交通拥堵情况正常、非节假日的某天,随机调查了该站的10名乘客的候车时间,发现其中有3名乘客候车时间超过15分钟,试判断该天公交车准点率是否正常,并说明理由.
参考数据:≈4.38,≈4.63,≈5.16,0.841357≈0.2984,0.841 356≈0.354 7,0.158653≈0.0040,0.158654≈0.0006,P(μ-σ<X<μ+σ)=0.6827,P(μ-2σ<X<μ+2σ)=0.9545,P(μ-3σ<X<μ+3σ)=0.9973.
[方法技巧]
正态分布下两类常见的概率计算
(1)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.
(2)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,及曲线与x轴之间的面积为1.注意下面结论的活用:
①对任意的a,有P(X<μ-a)=P(X>μ+a);
②P(X<x0)=1-P(X≥x0);
③P(a<X<b)=P(X<b)-P(X≤a).
[针对训练]
为了严格监控某种零件的一条生产线的生产过程,某企业每天从该生产线上随机抽取10 000个零件,并测量其内径(单位:cm).根据长期生产经验,认为这条生产线正常状态下生产的零件的内径X服从正态分布N(μ,σ2).如果加工的零件内径小于μ-3σ或大于μ+3σ均为不合格品,其余为合格品.
(1)假设生产状态正常,请估计一天内抽取的10 000个零件中不合格品的个数;
(2)若生产的某件产品为合格品则该件产品盈利;若生产的某件产品为不合格品则该件产品亏损.已知每件产品的利润L(单位:元)与零件的内径X有如下关系:
L=
求该企业一天从生产线上随机抽取10000个零件的平均利润.
附:若随机变量X服从正态分布N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.6827,P(μ-2σ<X≤μ+2σ)=0.9545,P(μ-3σ<X≤μ+3σ)=0.9973.
一、创新命题视角——学通学活巧迁移
二项分布与超几何分布的辨别方法
[典例] 写出下列离散型随机变量的分布列,并指出其中服从二项分布的是哪些?服从超几何分布的是哪些?
(1)X1表示n次重复抛掷1枚骰子出现点数是3的倍数的次数.
(2)X2表示连续抛掷2枚骰子,所得的2个骰子的点数之和.
(3)有一批产品共有N件,其中次品有M件(N>M>0),采用有放回抽取方法抽取n次(n>N),抽出的次品件数为X3.
(4)有一批产品共有N件,其中M件为次品,采用不放回抽取方法抽n件,出现次品的件数为X4(N-M>n>0).
[名师微点] 二项分布与超几何分布的辨别方法
| 二项分布 | 超几何分布 |
特点 | 在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p | 在含有M件次品的N件产品中,任取n件,其中恰有X件次品 |
概率 公式 | P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n | P(X=k)=,k=0,1,2,…,m(m=min{n,M},且n≤N,M≤N,n,M,N∈N*) |
期望、方差 公式 | E(X)=np,D(X)=np(1-p) | E(X)=,D(X)= |
当N→+∞时,超几何分布近似为二项分布 |
二、创新考查方式——领悟高考新动向
1.夏秋两季,生活在长江口外浅海域的中华鱼洄游到长江,历经三千多公里的溯流搏击,回到金沙江一带产卵繁殖,产后待幼鱼长大到15厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鱼鱼苗,该批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中的一个雌性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为( )
A.0.05 B.0.007 5
C. D.
2.(多选)“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究、应用与推广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给做出了杰出贡献.某杂交水稻种植研究所调查某地水稻的株高,得出株高(单位:cm)服从正态分布,其密度曲线函数为f(x)=e,x∈(-∞,+∞),则下列说法正确的是( )
A.该地水稻的平均株高为100 cm
B.该地水稻株高的方差为10
C.随机测量一株水稻,其株高在120 cm以上的概率比株高在70 cm以下的概率大
D.随机测量一株水稻,其株高在(80,90)和在(100,110)(单位:cm)的概率一样大
高端精品高中数学一轮专题-直线与直线方程(讲)教案: 这是一份高端精品高中数学一轮专题-直线与直线方程(讲)教案,共11页。教案主要包含了知识清单,考点分类剖析,规律方法,变式探究,易错提醒,典例10,典例11,总结提升等内容,欢迎下载使用。
高端精品高中数学一轮专题-椭圆(讲)教案: 这是一份高端精品高中数学一轮专题-椭圆(讲)教案,共9页。
高端精品高中数学一轮专题-椭圆(讲)(带答案)教案: 这是一份高端精品高中数学一轮专题-椭圆(讲)(带答案)教案,共13页。