年终活动
搜索
    上传资料 赚现金

    高端精品高中数学一轮专题-数学阶段测试卷(命题、数列、圆锥曲线)1试卷

    立即下载
    加入资料篮
    高端精品高中数学一轮专题-数学阶段测试卷(命题、数列、圆锥曲线)1试卷第1页
    高端精品高中数学一轮专题-数学阶段测试卷(命题、数列、圆锥曲线)1试卷第2页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高端精品高中数学一轮专题-数学阶段测试卷(命题、数列、圆锥曲线)1试卷

    展开

    这是一份高端精品高中数学一轮专题-数学阶段测试卷(命题、数列、圆锥曲线)1试卷,共5页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
    数学阶段测试卷(命题、数列、圆锥曲线)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果命题,命题,那么命题是命题  A.充分不必要条件             B.必要不充分条件  C.充要条件                   D.既不充分也不必要条件2.在平面内,到直线与到定点的距离相等的点的轨迹是A.抛物线            B.双曲线             C.椭圆          D.直线 3.在等差数列 A.2              B. 3                 C. 4            D.54.已知等比数列的各项均为正实数,其前项和为,若,则A.32             B.31     C.64  D.635.若椭圆的焦距为2,则实数的值为A.5   B.2      C.2或9  D.5或7 6.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为垛积术.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为A. 184 B. 174     C. 188    D. 1607.已知数列满足.设,且数列是单调递增数列,则实数的取值范围是A.            B.     C.  D.8.数列是等差数列,,数列满足,设的前项和,则当取得最大值时,的值等于A.9                 B.10                  C.11             D.12二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.设等差数列的前项和为,若,则有  A.    B.     C.      D.10.已知双曲线过点且渐近线方程为,则下列结论正确的是A.双曲线的方程为      B.双曲线的离心率为C.曲线经过双曲线的一个焦点 D.焦点到渐近线的距离为11.下列说法正确的是A.的必要不充分条件B.的充分不必要条件C.成等比数列的充要条件D.设是公比为的等比数列,则为递增数列的充分必要条件12.已知两监测点间距离为800米,且监测点听到爆炸声的时间比监测点迟2秒,设声速为340米/秒,下列说法正确的是A.爆炸点在以为焦点的椭圆上B.爆炸点在以为焦点的双曲线的一支上C.若监测点的声强是监测点的4倍(声强与距离的平方成反比),则爆炸点到监测点的距离为D.若监测点的声强是监测点的4倍(声强与距离的平方成反比),则爆炸点到监测点的距离为三、填空题:本题共4小题,每小题5分,共20分.请把答案直接填写在答题卡相应位置上.13.命题的否定是          .14.椭圆的右焦点为,以点为焦点的抛物线的标准方程是          .15.已知是椭圆的一个焦点,为椭圆上一点,为坐标原点,若为等边三角形,则椭圆的离心率为          .16.如图,在中,,点的中点,点为线段垂直平分线上的一点,且,固定边,在平面内移动顶点,使得的内切圆始终与切于线段的中点,且在直线的异侧,在移动过程中,当取得最大值时,的面积为          .  四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答。解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知公差不为零的等差数列的前项和成等比数列.(1)的通项公式(2)已知求数列的前项和.       18.(本小题满分10分)已知命题曲线表示焦点在轴上的椭圆,命题曲线表示双曲线.(1)若是真命题,求实数的取值范围;(2)若的必要不充分条件,求实数的取值范围.          19.(本小题满分12分)已知直线与椭圆交于两点.(1)条件下,求的面积的最大值;(2)时,求直线的方程.       20.(本小题满分12分)已知各项均为正数的数列,其前项和为,满足(1)求数列的通项公式;(2)若,求数列的前项和              21.(本小题满分12分) 某同学尝试用数学模型来说明隔离和医疗两大因素在对抗传染病时的作用.模型假设如下:假设1、传染病在人群中的表现有潜伏期和爆发期两种形式,潜伏期无症状,爆发期可以被人识别,无论在潜伏期还是爆发期的病人都具有相同的传染性.潜伏期时间记为m0,以潜伏期时间m0为一个传染周期;假设2、记r0为一个病人在一个传染周期内平均感染人数;假设3、某一固定区域(如某个城市)的人群,保持原有的生活习惯,即r0不变.1)第一模型:无干预模型.在上述模型假设中,取m0=1天,r0=1.2,假设初始的潜伏期人数为1万人,那么1天后将有1万人处于爆发期,1.2万人处于潜伏期,感染总人数为2.2万人,,请问9天后感染总人数是多少?2)第二模型:无限医疗模型.增加两个模型假设:假设4、政府和社会加大医疗投入,将所有爆发期的病人应收尽收假设5、潜伏期病人在传染健康人群后转为爆发期病人,然后被收入医院,收入医院的病人即失去传染性在第二模型中,取m0=1天,r0=1.2,假设初始的潜伏期人数为1万人,请问多少天后感染总人数将超过1000万?(参考数据:.     22.(本小题满分14分)已知椭圆的离心率为,椭圆的上顶点到右顶点的距离为为坐标原点.(1)求椭圆的标准方程;(2)若是椭圆上两点(异于顶点),且的面积为,设射线的斜率分别为,求的值;3)设直线与椭圆交于两点(直线不过顶点),且以线段为直径的      圆过椭圆的右顶点,求证:直线过定点.    

    相关试卷

    高端精品高中数学一轮专题-数学阶段测试卷(集合,命题,不等式,函数,三角函数)1试卷:

    这是一份高端精品高中数学一轮专题-数学阶段测试卷(集合,命题,不等式,函数,三角函数)1试卷,共4页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    高端精品高中数学一轮专题-数学阶段测试卷(集合,命题,不等式,函数,三角函数)1(带答案)试卷:

    这是一份高端精品高中数学一轮专题-数学阶段测试卷(集合,命题,不等式,函数,三角函数)1(带答案)试卷,共11页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    高端精品高中数学一轮专题-数学阶段测试卷(空间向量、立体几何、直线与圆、圆锥曲线)1(带答案)试卷:

    这是一份高端精品高中数学一轮专题-数学阶段测试卷(空间向量、立体几何、直线与圆、圆锥曲线)1(带答案)试卷,共12页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map