数学必修33.1.1随机现象教案设计
展开这是一份数学必修33.1.1随机现象教案设计,共4页。
随机现象
教学目标:了解随机现象,概率论的历史
教学重点:了解随机现象,概率论的历史
教学过程:
1.从随机现象说起
在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成截然不同的两大类:一类是确定性的现象。这类现象是在一定条件下,必定会导致某种确定的结果。举例来说,在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。通常的自然科学各学科就是专门研究和认识这种必然性的,寻求这类必然现象的因果关系,把握它们之间的数量规律。
另一类是不确定性的现象。这类现象是在一定条件下,它的结果是不确定的。举例来说,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各棵种子的发芽情况也不尽相同,有强弱和早晚的分别等等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素又是人们无法事先一一能够掌握的。正因为这样,我们在这一类现象中,就无法用必然性的因果关系,对个别现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。
在自然界,在生产、生活中,随机现象十分普遍,也就是说随机现象是大量存在的。比如:每期体育彩票的中奖号码、同一条生产线上生产的灯泡的寿命等,都是随机现象。因此,我们说:随机现象就是:在同样条件下,多次进行同一试验或调查同一现象,所的结果不完全一样,而且无法准确地预测下一次所得结果的现象。随机现象这种结果的不确定性,是由于一些次要的、偶然的因素影响所造成的。
随机现象从表面上看,似乎是杂乱无章的、没有什么规律的现象。但实践证明,如果同类的随机现象大量重复出现,它的总体就呈现出一定的规律性。大量同类随机现象所呈现的这种规律性,随着我们观察的次数的增多而愈加明显。比如掷硬币,每一次投掷很难判断是那一面朝上,但是如果多次重复的掷这枚硬币,就会越来越清楚的发现它们朝上的次数大体相同。
我们把这种由大量同类随机现象所呈现出来的集体规律性,叫做统计规律性。概率论和数理统计就是研究大量同类随机现象的统计规律性的数学学科。
2.概率论的产生和发展
概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢 m局就算赢,全部赌本就归谁。但是当其中一个人赢了 a 局赌本如何分配?三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。
近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学,如信息论、对策论、排队论、控制论等,都是以概率论作为基础的。
1.若,则是 ( )
A.随机事件 B.必然事件
C.不可能事件 D.以上说法都不对
2.在10件同类产品中,有8件是正品,2件是次品,从中任意抽出3件的必然
事件是 ( )
A.3件都是正品 B.至少有1件是次品
C.3件都是次品 D.至少有1件是正品
3.判断下列现象:(1)某路口单位时间内发生交通事故的次数;(2)水的沸点是100℃;(3)三角形的内角和为180°;(4)一个射击运动员每次射击的命中环数;(5)任一实数的平方是非负数.其中是随机现象的是 ( )
A.(1)(2)(4) B.(1)(4) C.(1)(3)(4) D.(1)(4)(5)
4.①已经发生的事件一定是必然事件;
②随机事件的发生能够人为控制其发生或不发生;
③不可能事件反映的是确定性现象;
④随机现象的结果是可以预知的.
以上说法正确的是 ( )
A. ①③ B.①② C.③ D.②④
5.给出下列事件:(1)在常温下,焊锡熔化;(2)同时掷二颗骰子,都出现2点;(3)如果都是实数且,那么;(4)三角形两边之和大于第三边;(5)口袋中有3个红球,2个白球,随机摸出一个球,这个球是白球,其中必然事件有______,不可能事件有_______,随机事件有________.
6.给出下列两个随机事件:(1)抛10次同一枚的质地均匀的硬币,有10次正面向上;(2)姚明在本赛季中共罚球57次,有53次投球命中.其中事件(1)的一次试验是_______________,事件(2)一共进行了___________次试验.
7. 事件”某人掷骰子5次,两次点数为2”是随机事件吗?条件和结果是什么?一次试验是指什么?一共做了几次试验?
8. 在10个学生中,男生有个,现从10个学生中任选6人去参加某项活动.
①至少有一个女生;②5个男生,1个女生;③3个男生,3个女生.当为何值时,使得①为必然事件,②为不可能事件,③为随机事件?
9.同时抛掷骰子个,已知事件:”点数之和大于2”为必然事件,事件:”点数之和大于30”为不可能事件,事件”点数之和等于20”为随机事件,求的值.
10.已知,给出事件.
(1)当A为必然事件时,求的取值范围;
(2)当A为不可能事件时,求的取值范围.
答案
1.B 2.D 3.A 4.C 5.(4); (1)(3); (2)(5) 6.“抛一次硬币”; 57次
7. 是随机事件.条件:某人掷骰子5次,结果:两次点数为2,掷骰子一次就是一次试验,一共做了5次试验.
8. ”至少有1个女生”为必然事件,则有;
“5个男生,1个女生”为不可能事件,则有或;
“3个男生,3个女生”为随机事件,则有;
综上所述,又由,可知或.
9.”点数之和大于2”为必然事件,则;
”点数之和大于30”为不可能事件,则,∴;
”点数之和等于20”为随机事件,∵20=6×3+2,∴;
综上知: 且,故或.
10. 此时,
又
(1)当A为必然事件时,即恒成立,所以有,则的取值范围是
(1)当A为不可能事件时,即一定不成立,所以有,则的取值范围是
相关教案
这是一份人教版新课标B必修33.3.2随机数的含义与应用教学设计,共3页。教案主要包含了〖复习回顾〗,〖新知探究〗,〖典型例题〗,〖归纳小结〗,〖板书设计〗,〖教后记〗,〖课堂作业〗等内容,欢迎下载使用。
这是一份高中数学人教版新课标B必修33.1.1随机现象教案,共3页。
这是一份人教版新课标B必修33.1.1随机现象教案,共2页。