山东省枣庄市台儿庄区2021-2022学年九年级上学期期中考试数学试题(word版 含答案)
展开
这是一份山东省枣庄市台儿庄区2021-2022学年九年级上学期期中考试数学试题(word版 含答案),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题
1.把方程左边化成含有的完全平方式,其中正确的是( )
A.B.
C.D.
2.如图,D、E、F分别是各边中点,则以下说法错误的是( )
A.和的面积相等
B.四边形是平行四边形
C.若,则四边形是菱形
D.若,则四边形是矩形
3.小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )
A.B.C.D.
4.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为( )
A.B.C.D.
5.关于的一元二次方程有实数根,则的取值范围是( )
A.且B.C.且D.
6.甲和乙两个几何体都是由大小相同的小立方块搭成,它们的俯视图如图,小正方形中数字表示该位置上的小立方块个数( )
A.甲和乙左视图相同,主视图相同B.甲和乙左视图不相同,主视图不相同
C.甲和乙左视图相同,主视图不相同D.甲和乙左视图不相同,主视图相同
7.已知关于x的一元二次方程x2-kx+k-3=0的两个实数根分别为,且,则k的值是( )
A.-2B.2C.-1D.1
8.如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O做ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )
A.1B.C.2D.
9.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为( )
A.16B.24C.16或24D.48
10.如图,将△ABC沿BC边向右平移得到△DEF,DE交AC于点G.若BC:EC=3:1.S△ADG=16.则S△CEG的值为( )
A.2B.4C.6D.8
11.若实数k、b是一元二次方程的两个根,且,则一次函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
12.如图,在菱形ABCD中,点E、F分别是边BC、CD的中点,连接AE、AF、EF.若菱形ABCD的面积为16,则△AEF的面积为( )
A.3B.4C.5D.6
二、填空题
13.若,则________.
14.已知x=是关于x的方程的一个根,则m=____________.
15.贵阳市2021年中考物理实验操作技能测试中,要求学生两人一组合作进行,并随机抽签决定分组.有甲、乙、丙、丁四位同学参加测试,则甲、乙两位同学分到同一组的概率是___________.
16.如图,在中,,过点B作,垂足为B,且,连接CD,与AB相交于点M,过点M作,垂足为N.若,则MN的长为__________.
17.如图,BD是正方形ABCD的一条对角线,E是BD上一点,F是CB延长线上一点,连接CE,EF,AF.若,,则的度数为__________.
18.根据图中数字的规律,若第n个图中的q=143,则p的值为 ___.
三、解答题
19.解方程
(1) (2)(配方法)
20.为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.
(1)小明从中随机抽取一张卡片是足球社团B的概率是 .
(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.
21.如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣1,2)、B(2,1)、C(4,5).
(1)以原点O为位似中心,在x轴的上方画出△A1B1C1,使△A1B1C1与△ABC位似,且相似比为2;
(2)△A1B1C1的面积是 平方单位.
(3)点P(a,b)为△ABC内一点,则在△A1B1C1内的对应点P’的坐标为 .
22.如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.
(1)求证:;
(2)若BE=,∠C=60°,求菱形ABCD的面积.
23.实践与探究
操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则 度.
操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则 度.
在图②中,运用以上操作所得结论,解答下列问题:
(1)设AM与NF的交点为点P.求证:.
(2)若,则线段AP的长为 .
24.泰兴鑫都小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副.鑫都小商品市场为增加销售量,决定降价销售.根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.
(1)填表:
(2)如果鑫都小商品市场希望通过销售这批羽毛球拍获利9200元,那么十月份的销售单价应是多少元?
25.如图,在平行四边形ABCD中,AB=3,点E为线段AB的三等分点(靠近点A),点F为线段CD的三等分点(靠近点C),且CE⊥AB.将△BCE沿CE对折,BC边与AD边交于点G,且DC=DG.
(1)证明:四边形AECF为矩形;
(2)求四边形AECG的面积.
月份
九月
十月
清仓
销售单价(元)
100
50
销售量(件)
200
参考答案
1.B
【详解】
方程两边同时加上一次项系数一半的平方,得到x2-10x+(-5)2=-3+(-5)2,
即x2-10x+(-5)2=22.
故选B.
2.C
【分析】
根据中位线的性质,相似三角形的判定和性质,平行四边形、菱形、矩形的判定定理逐一判断各个选项,即可得到答案.
【详解】
解: ∵点D、E、F分别是△ABC三边的中点,
∴DE、DF为△ABC得中位线,
∴ED∥AC,且ED=AC=AF;同理DF∥AB,且DF=AB=AE,
∴四边形AEDF一定是平行四边形,故B正确;
∴,
∴, ,
∴和的面积相等,故A正确;
∵,
∴DF=AB=AE,
∴四边形不一定是菱形,故C错误;
∵∠A=90°,则四边形AEDF是矩形,故D正确;
故选:C.
【点睛】
本题考查三角形中位线性质定理和平行四边形、矩形、菱形的判定定理,相似三角形的判定和性质,熟练掌握上述性质定理和判定定理是解题的关键.
3.C
【分析】
利用列表法或树状图即可解决.
【详解】
分别用r、b代表红色帽子、黑色帽子,用R、B、W分别代表红色围巾、黑色围巾、白色围巾,列表如下:
则所有可能的结果数为6种,其中恰好为红色帽子和红色围巾的结果数为1种,根据概率公式,恰好为红色帽子和红色围巾的概率是.
故选:C.
【点睛】
本题考查了简单事件的概率,常用列表法或画树状图来求解.
4.C
【分析】
由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,证明AB=AF=2k,DF=DG=k,再利用平行线分线段成比例定理即可解决问题.
【详解】
解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,AB=CD,
∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,
∵BE平分∠ABC,
∴∠ABF=∠CBG,
∴∠ABF=∠AFB=∠DFG=∠G,
∴AB=CD=2k,DF=DG=k,
∴CG=CD+DG=3k,
∵AB∥DG,
∴△ABE∽△CGE,
∴,
故选:C.
【点睛】
本题考查了比例的性质、相似三角形的判定及性质、等腰三角形的性质、角平分线的性质、平行四边形的性质、平行线分线段成比例定理,熟练掌握性质及定理是解题的关键.
5.A
【分析】
根据一元二次方程的定义和判别式的意义得到a+2≠0且△≥0,然后求出两不等式的公共部分即可.
【详解】
解:∵关于x的一元二次方程有实数根,
∴△≥0且a+2≠0,
∴(-3)2-4(a+2)×1≥0且a+2≠0,
解得:a≤且a≠-2,
故选:A.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
6.D
【分析】
根据俯视图,即可判断左视图和主视图的形状.
【详解】
由甲俯视图知,其左视图为,由乙俯视图知,其左视图为,故它们的左 视图不相同,但它们两个的主视图相同,都是.
故选:D.
【点睛】
本题考查了三视图的知识,关键是根据俯视图及题意确定几何体的形状,从而可确定其左视图和主视图.
7.D
【分析】
利用根与系数的关系得出,,进而得出关于的一元二次方程求出即可.
【详解】
解:关于的一元二次方程的两个实数根分别为,,
,,
,
,
,
整理得出:,
解得:,
故选:D.
【点睛】
本题考查了一元二次方程,,,为常数)根与系数的关系:,.
8.C
【分析】
先证明,再证明四边形MOND的面积等于,的面积,继而解得正方形的面积,据此解题.
【详解】
解:在正方形ABCD中,对角线BD⊥AC,
又
四边形MOND的面积是1,
正方形ABCD的面积是4,
故选:C.
【点睛】
本题考查正方形的性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.
9.B
【分析】
解方程得出x=4或x=6,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=6时,6+6>8,即可得出菱形ABCD的周长.
【详解】
解:如图所示:
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,
∵x2﹣10x+24=0,
因式分解得:(x﹣4)(x﹣6)=0,
解得:x=4或x=6,
分两种情况:
①当AB=AD=4时,4+4=8,不能构成三角形;
②当AB=AD=6时,6+6>8,
∴菱形ABCD的周长=4AB=24.
故选:B.
【点睛】
本题考查菱形的性质、解一元二次方程-因式分解法、三角形的三边关系,熟练掌握并灵活运用是解题的关键.
10.B
【分析】
根据相似三角形得到,比例的性质得到,由题意可得从而得到,根据相似三角形的性质,求解即可.
【详解】
解:由题意可得:,,
∴,,
∴,
∴,
∵,
∴,
∵,
∴,
故选:B
【点睛】
此题考查了相似三角形的判定与性质,涉及了平移的性质,解题的关键是灵活利用相关性质进行求解.
11.C
【分析】
根据一元二次方程的解法求出k、b的值,由一次函数的图像即可求得.
【详解】
∵实数k、b是一元二次方程的两个根,且,
∴,
∴一次函数表达式为,
有图像可知,一次函数不经过第三象限.
故选:C.
【点睛】
此题考查了一元二次方程的解法,一次函数图像,解题的关键是熟练掌握一元二次方程的解法和一次函数图像.
12.D
【分析】
连接AC、BD,交于点O,AC交EF于点G,根据菱形性质可得菱形面积公式,然后根据三角形中位线定理得EF与BD关系,最后根据三角形面积公式代入计算可得答案.
【详解】
解:连接AC、BD,交于点O,AC交EF于点G,
∵四边形ABCD是菱形,
∴AO=OC,菱形ABCD的面积为:AC•BD,
∵点E、F分别是边BC、CD的中点,
∴EF∥BD,EF=BD,
∴AC⊥EF,,
∴OG=CG,
∴AG=3CG,
设AC=a,BD=b,
∴ab=16,即ab=32,
S△AEF=EF•AG=×b×a=ab=6.
故选:D.
【点睛】
此题考查的是菱形的性质、平行线分线段成比例定理、三角形中位线定理,能够利用三角形面积公式得到答案是解决此题关键.
13.
【分析】
根据比例的基本性质进行化简,代入求职即可.
【详解】
由可得,,
代入.
故答案为.
【点睛】
本题主要考查了比例的基本性质化简,准确观察分析是解题的关键.
14.1
【分析】
把x=代入方程得到关于m的方程,然后解关于m的方程即可.
【详解】
解:把x=代入方程得,
解得m=1.
故答案为1.
【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
15.
【分析】
画树状图,共有12种等可能的结果,甲、乙两位同学分到同一组的结果有2种,再由概率公式求解即可.
【详解】
解:画树状图如图:
共有12种等可能的结果,甲、乙两位同学分到同一组的结果有4种,
∴甲、乙两位同学分到同一组的概率为,
故答案为:.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
16.
【分析】
根据MN⊥BC,AC⊥BC,DB⊥BC,得,可得,因为,列出关于MN的方程,即可求出MN的长.
【详解】
∵MN⊥BC,DB⊥BC,
∴AC∥MN∥DB,
∴,
∴
即,
又∵,
∴,
解得,
故填:.
【点睛】
本题考查相似三角形的判定和性质,解题关键是根据题意得出两组相似三角形以及它们对应边之比的等量关系.
17.
【分析】
首先连接AE,由题可知,DE=DC=AD,所以△DEC,△AED,△EFC是等腰三角形,由正方形的性质得∠EBC=∠ADE=∠EDC=45°,求出,得出=22.5°,,,所以 ,得出∠AEF=90°,再证明 ,则,所以△AEF为等腰直角三角形,∠FAE=45°,减去∠BAE即可.
【详解】
连接AE,如图,
∵四边形ABCD为正方形,
∴AD=CD,∠ADE=∠EDC=∠CBE=45°, ,
∵DE=CD,
∴AD=DE=CD,
∴∠DAE=∠DEA=∠DEC=∠DCE=67.5°,
∴ , ,
又∵EF=EC,
∴ ,
∴ ,
∴ ,
∴ ,
在△DAE和△DEC中:
∵
∴△DAE≌△DEC(SAS),
∴AE=EC,
又∵EC=EF,
∴AE=EF,
∴△AEF为等腰直角三角形,
∴∠FAE=45°,
∴,
故填:22.5°.
【点睛】
本题考查正方形的性质,等腰三角形的性质,全等三角形的判定,三角形内角和,解题关键是添加辅助线,构造全等三角形.
18.121
【分析】
每个图形中,左边三角形上的数字即为图形的序数n,右边三角形上的数字为p=n2,下面三角形上的数字q=(n+1)2-1,先把q=143代入求出n的值,再进一步求出p的值.
【详解】
解:通过观察可得规律:p=n2,q=(n+1)2-1,
∵q=143,
∴(n+1)2-1=143,
解得:n=11,
∴p=n2=112=121,
故答案为:121.
【点睛】
本题考查了图形中有关数字的变化规律,能准确观察到相关规律是解决本题的关键.
19.(1);(2).
【分析】
(1)利用配方法解一元二次方程即可得;
(2)利用配方法解一元二次方程即可得.
【详解】
解:(1),
,
,
,
,
,
即;
(2),
,
,
,
,
或,
即.
【点睛】
本题考查了解一元二次方程,熟练掌握解方程的方法(配方法)是解题关键.
20.(1);(2)见解析,.
【分析】
(1)直接根据概率公式求解;
(2)利用列表法展示所有12种等可能性结果,再找出小明两次抽取的卡片中有一张是科技社团D的结果数,然后根据概率公式求解.
【详解】
(1)小明从中随机抽取一张卡片是足球社团B的概率=;
(2)列表如下:
由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D的结果数为6种,
所以小明两次抽取的卡片中有一张是科技社团D的概率为.
【点睛】
本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率
21.(1)见解析;(2)28;(3)(2a,2b).
【分析】
(1)连接OB,延长OB到B1使得OB1=2OB,同法作出A1,C1,连接A1C1,B1C1,A1B1即可.
(2)两条分割法求出三角形的面积即可.
(3)利用相似三角形的性质解决问题即可.
【详解】
解:(1)△A1B1C1即为所求.
(2)△A1B1C1的面积=4S△ABC=4×(4×5﹣×3×5﹣×1×3﹣×2×4)=28,
故答案为:28.
(3)点P(a,b)为△ABC内一点,则在△A1B1C1内的对应点P’的坐标为(2a,2b),
故答案为:(2a,2b).
【点睛】
本题考查作图——位似变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
22.(1)详见解析;(2)2.
【分析】
(1)利用菱形的性质,由SAS证明即可;
(2)证是等边三角形,得出BE⊥AD,求出AD即可.
【详解】
(1)证明:∵四边形ABCD是菱形,
∴AB=AD,
∵点E,F分别是边AD,AB的中点,
∴AF=AE,
在和中,
,
∴(SAS);
(2)解:连接BD,如图:
∵四边形ABCD是菱形,
∴AB=AD,∠A=∠C=60°,
∴是等边三角形,
∵点E是边AD的中点,
∴BE⊥AD,
∴∠ABE=30°,
∴AE=BE=1,AB=2AE=2,
∴AD=AB=2,
∴菱形ABCD的面积=AD×BE=2×=2.
【点睛】
本题考查的是菱形的性质,等边三角形的判定与性质,菱形的面积的计算,掌握以上知识是解题的关键.
23.操作一:45°,操作二:60°;(1)证明见解析;(2)
【分析】
操作一:直接利用折叠的性质,得出两组全等三角形,从而得出,,从而得出∠EAF的值;
操作二:根据折叠的性质得出 ,从而得出,即可求得的度数;
(1)首先利用 ,得出 ,则,从而得出△ANF为等腰直角三角形,即可证得;
(2)利用三角函数或者勾股定理求出BE的长,则,设DF=x,那么FC=,在Rt△EFC中,利用勾股定理得出DF的长,也就是MF的长,即可求得EF的长,进而可得结果.
【详解】
操作一:45°,证明如下:
∵折叠得到 , 折叠得到 ,
∴ ,
∴ ,
∴
,
故填:45°;
操作二:60°,证明如下:
∵,
∴ ,
又∵沿着EF折叠得到 ,
∴,
∴ ,
∴ ,
故填:60°;
(1)证明:
由上述证明得,,
∴ ,
∵四边形ABCD为正方形,
∴∠C=∠D=90°,
∴ ,,
又∵ ,
∴,
在和中,
∵ ,
∴ ,
∴ ,
∴ ,
∴ ,
∴为等腰直角三角形,
即AN=NF,
在和中:
∵
∴
(2)由题可知是直角三角形,,
∴ ,
解得BE=1,
∴BE=EM=1,,
设DF=x,则MF=x,CF=,
在Rt△CEF中,
,
解得x=,
则,
∵
∴AP=EF=.
【点睛】
本题考查正方形的性质,折叠的性质,全等三角形的判定,勾股定理,解题的关键是熟练运用折叠的性质,找出全等三角形.
24.(1)100-x;200+2x;400-2x;(2)十月份的销售单价应是80元
【分析】
(1)十月份的单价等于九月份的单价减去降价的数量;十月份的销售量等于九月份的销售量加上下降价格的2倍;清仓的数量等于总的数量减去九月份和十月份的数量;
(2)根据总获利等于总的销售价格减去进货的总价得出一元二次方程,最后根据售价进行验根得出答案.
【详解】
解:(1)由题意,十月份单价为:100-x;
十月份销量为:;
清仓数量为:;
故答案为:100-x;200+2x;400-2x;
(2)根据题意得:
100×200+(100-x)(200+2x)+50[800-200-(200+2x)]-60×800=9200,
解得x1=20,x2=-70(舍去).
当x=20时,100-x=80>60,符合题意.
答:十月份的销售单价应是80元.
【点睛】
本题考查一元二次方程的实际应用,理解题意,准确通过表格分析列出一元二次方程并求解检验是解题关键.
25.(1)见解析;(2)
【分析】
(1)由已知可得AE=AB,CF=CD,能得到AE=CF,AE∥CF,再由CE⊥AB,即可证明四边形AECF为矩形;
(2)由折叠可知B'E=BE=2,求得AB'=1,先证明∠B'=∠B'GA,能得到AB'=AG=1,再由AB'∥CD,得到即,得到B'G=1,能得到△AGB'是等边三角形,所求四边形AECG的面积等于直角三角形EB'C与等边三角形AGB'的差.
【详解】
(1)证明:∵ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵点E为线段AB的三等分点(靠近点A),
∴AE=AB,
∵点F为线段CD的三等分点(靠近点C),
∴CF=CD,
∴AE=CF,
又∵AE∥CF,
∴四边形AECF为平行四边形,
∵CE⊥AB,
∴四边形AECF为矩形;
(2)∵AB=3,
∴AE=CF=1,BE=2,
∵将△BCE沿CE对折得到△ECB',
∴B'E=BE=2,
∴AB'=1,
∵DC=DG=3,
∴∠DGC=∠DCG,
∵BB'∥CD,
∴∠DCG=∠B',
∴∠B'=∠DGC,
∵∠DGC=∠B'GA,
∴∠B'=∠B'GA,
∴AB'=AG=1,
∴DA=BC=B'C=4,
∵AB'∥CD,
∴,
∴,
∴B'G=1,
∴△AGB'是等边三角形,
∴A B'=AG=B'G=1,
作GH⊥A B'于H,
则AH=A B'=,
∴GH=,
在Rt△BCE中,BC=4,BE=2,
∴EC==2,
∴S四边形AECG=S△EB'C-S△AB'G=.
【点睛】
本题考查平行四边形的性质,矩形的判定,等边三角形的判定与性质,勾股定理,平行线分线段成比例定理;利用平行线分线段成比例定理,确定△AGB'是等边三角形是解本题的关键.R
B
W
r
rR
rB
rW
b
bR
bB
bW
A
B
C
D
A
(B,A)
(C,A)
(D,A)
B
(A,B)
(C,B)
(D,B)
C
(A,C)
(B,C)
(D,C)
D
(A,D)
(B,D)
(C,D)
相关试卷
这是一份山东省枣庄市台儿庄区2023-2024学年八年级上学期1月期末数学试题,共4页。
这是一份山东省枣庄市台儿庄区2023-2024学年九年级上学期期中数学试题,共4页。
这是一份山东省枣庄市台儿庄区2021-2022学年八年级上学期期末数学试题,共6页。