- 2021年黑龙江省哈尔滨市中考数学试卷 试卷 5 次下载
- 2021年河北省中考数学试卷 试卷 7 次下载
- 2021年广西百色市中考数学试卷 试卷 0 次下载
- 2021年吉林省中考数学试卷 试卷 2 次下载
- 2021年山西省中考数学试卷 试卷 2 次下载
2021年贵州省毕节市中考数学试卷
展开2021年贵州省毕节市中考数学试卷
一、选择题(本题15小题,每小题3分,共45分)
1.(3分)下列各数中,为无理数的是( )
A.π B. C.0 D.﹣2
2.(3分)如图所示的几何体,其左视图是( )
A. B. C. D.
3.(3分)6月6日是全国“放鱼日”为促进渔业绿色发展,今年“放鱼日”当天,全国同步举办增殖放流200余场,放流各类水生生物苗种近30亿尾.数30亿用科学记数法表示为( )
A.0.3×109 B.3×108 C.3×109 D.30×108
4.(3分)下列城市地铁标志图案中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )
A.70° B.75° C.80° D.85°
6.(3分)下列运算正确的是( )
A.(3﹣π)0=﹣1 B.=±3 C.3﹣1=﹣3 D.(﹣a3)2=a6
7.(3分)若正多边形的一个外角是45°,则该正多边形的内角和为( )
A.540° B.720° C.900° D.1080°
8.(3分)《九章算术》中记载了一个问题,大意是甲、乙两人各带了若干钱.若甲得到乙所有钱的一半,则甲共有钱50.若乙得到甲所有钱的,则乙也共有钱50.甲、乙两人各带了多少钱?设甲带了钱x,乙带了钱y,依题意,下面所列方程组正确的是( )
A. B.
C. D.
9.(3分)如图,拦水坝的横断面为梯形ABCD,其中AD∥BC,∠ABC=45°,∠DCB=30°,斜坡AB长8m,则斜坡CD的长为( )
A.6m B.8m C.4m D.8m
10.(3分)已知关于x的一元二次方程ax2﹣4x﹣1=0有两个不相等的实数根,则a的取值范围是( )
A.a≥﹣4 B.a>﹣4 C.a≥﹣4且a≠0 D.a>﹣4且a≠0
11.(3分)下列说法正确的是( )
A.了解市民知晓“礼让行人”交通新规的情况,适合全面调查
B.一组数据5,5,3,4,1的中位数是3
C.甲、乙两人9次跳高成绩的方差分别为S甲2=1.1,S乙2=2.5,说明乙的成绩比甲稳定
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
12.(3分)某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,,所在圆的圆心为O,点C,D分别在OA,OB上.已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB=120°,则弯道外边缘的长为( )
A.8πm B.4πm C.πm D.πm
13.(3分)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为( )
A.5 B.6 C.7 D.8
14.(3分)如图,在矩形纸片ABCD中,AB=7,BC=9,M是BC上的点,且CM=2.将矩形纸片ABCD沿过点M的直线折叠,使点D落在AB上的点P处,点C落在点C′处,折痕为MN,则线段PA的长是( )
A.4 B.5 C.6 D.2
15.(3分)如图,已知抛物线y=ax2+bx+c开口向上,与x轴的一个交点为(﹣1,0),对称轴为直线x=1.下列结论错误的是( )
A.abc>0 B.b2>4ac C.4a+2b+c>0 D.2a+b=0
二、填空题(本题5小题,每小题5分,共25分)
16.(5分)将直线y=﹣3x向下平移2个单位长度,平移后直线的解析式为 .
17.(5分)学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8m到达点D处,测得影子DE长是2m,则路灯灯泡A离地面的高度AB为 m.
18.(5分)如图,在菱形ABCD中,BC=2,∠C=120°,Q为AB的中点,P为对角线BD上的任意一点,则AP+PQ的最小值为 .
19.(5分)如图,在平面直角坐标系中,点N1(1,1)在直线l:y=x上,过点N1作N1M1⊥l,交x轴于点M1;过点M1作M1N2⊥x轴,交直线于N2;过点N2作N2M2⊥l,交x轴于点M2;过点M2作M2N3⊥x轴,交直线l于点N3;…,按此作法进行下去,则点M2021的坐标为 .
20.(5分)如图,直线AB与反比例函数y=(k>0,x>0)的图象交于A,B两点,与x轴交于点C,且AB=BC,连接OA.已知△OAC的面积为12,则k的值为 .
三、解答题(本题7小题,共80分)
21.(8分)先化简,再求值:÷(a﹣),其中a=2,b=1.
22.(8分)x取哪些正整数值时,不等式5x+2>3(x﹣1)与≤都成立?
23.(10分)学完统计知识后,小明对同学们最近一周的睡眠情况进行随机抽样调查,得到他们每日平均睡眠时长t(单位:小时)的一组数据,将所得数据分为四组(A:t<8,B:8≤t<9,C:9≤t<10,D:t≥10),并绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)小明一共抽样调查了 名同学;在扇形统计图中,表示D组的扇形圆心角的度数为 ;
(2)将条形统计图补充完整;
(3)小明所在学校共有1400名学生,估计该校最近一周大约有多少名学生睡眠时长不足8小时?
(4)A组的四名学生是2名男生和2名女生,若从他们中任选2人了解最近一周睡眠时长不足8小时的原因,试求恰好选中1名男生和1名女生的概率.
24.(12分)如图,⊙O是△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D,连接BD,BE.
(1)求证:DB=DE;
(2)若AE=3,DF=4,求DB的长.
25.(12分)某中学计划暑假期间安排2名老师带领部分学生参加红色旅游.甲、乙两家旅行社的服务质量相同,且报价都是每人1000元.经协商,甲旅行社的优惠条件是:老师、学生都按八折收费;乙旅行社的优惠条件是:两位老师全额收费,学生都按七五折收费.
(1)设参加这次红色旅游的老师学生共有x名,y甲,y乙(单位:元)分别表示选择甲、乙两家旅行社所需的费用,求y甲,y乙关于x的函数解析式;
(2)该校选择哪家旅行社支付的旅游费用较少?
26.(14分)如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为△ABC内一点,将线段AD绕点A逆时针旋转90°得到AE,连接CE,BD的延长线与CE交于点F.
(1)求证:BD=CE,BD⊥CE;
(2)如图2,连接AF,DC,已知∠BDC=135°,判断AF与DC的位置关系,并说明理由.
27.(16分)如图,抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,顶点为D,点B的坐标为(3,0).
(1)填空:点A的坐标为 ,点D的坐标为 ,抛物线的解析式为 ;
(2)当二次函数y=x2+bx+c的自变量x满足m≤x≤m+2时,函数y的最小值为,求m的值;
(3)P是抛物线对称轴上一动点,是否存在点P,使△PAC是以AC为斜边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
2021年贵州省毕节市中考数学试卷
参考答案与试题解析
一、选择题(本题15小题,每小题3分,共45分)
1.(3分)下列各数中,为无理数的是( )
A.π B. C.0 D.﹣2
【分析】根据无理数的定义逐个判断即可.
【解答】解:A.π是无理数,故本选项符合题意;
B.是有理数,不是无理数,故本选项不符合题意;
C.0是有理数,不是无理数,故本选项不符合题意;
D.﹣2是有理数,不是无理数,故本选项不符合题意;
故选:A.
【点评】本题考查了无理数的定义,能熟记无理数的定义是解此题的关键,注意:无理数是指无限不循环小数.
2.(3分)如图所示的几何体,其左视图是( )
A. B. C. D.
【分析】画出从左面看这个几何体所得到的图形即可.
【解答】解:这个几何体的左视图为:
故选:C.
【点评】本题考查简单组合体的三视图,理解视图的意义,掌握三视图的画法是得出正确答案的前提.
3.(3分)6月6日是全国“放鱼日”为促进渔业绿色发展,今年“放鱼日”当天,全国同步举办增殖放流200余场,放流各类水生生物苗种近30亿尾.数30亿用科学记数法表示为( )
A.0.3×109 B.3×108 C.3×109 D.30×108
【分析】按科学记数法的要求,直接把数据表示为a×10n(其中1≤|a|<10,n为整数)的形式即可.
【解答】解:30亿=3000000000=3×109,
故选:C.
【点评】本题考查了用科学记数法表示较大的数.掌握用科学记数法表示较大数的方法是解决本题的关键.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.(3分)下列城市地铁标志图案中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.
【解答】解:A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;
B.不是轴对称图形,是中心对称图形,故此选项不合题意;
C.是轴对称图形,不是中心对称图形,故此选项不合题意;
D.既是轴对称图形,又是中心对称图形,故此选项符合题意;
故选:D.
【点评】此题主要考查了中心对称图形和轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )
A.70° B.75° C.80° D.85°
【分析】利用三角形内角和定理和平行线的性质解题即可.
【解答】解:如图,
∵∠2=90°﹣30°=60°,
∴∠3=180°﹣45°﹣60°=75°,
∵a∥b,
∴∠1=∠3=75°,
故选:B.
【点评】此题考查平行线的性质,关键是根据两直线平行,同位角相等解答.
6.(3分)下列运算正确的是( )
A.(3﹣π)0=﹣1 B.=±3 C.3﹣1=﹣3 D.(﹣a3)2=a6
【分析】根据零指数幂的定义即可判断A;根据算术平方根的定义即可判断B;根据负整数指数幂的定义即可判断C;根据幂的乘方与积的乘方即可判断D.
【解答】解:A.(3﹣π)0=1,故本选项不符合题意;
B.=3,故本选项不符合题意;
C.3﹣1=,故本选项不符合题意;
D.(﹣a3)2=a6,故本选项符合题意;
故选:D.
【点评】本题考查了零指数幂,算术平方根,负整数指数幂,幂的乘方与积的乘方等知识点,能正确根据零指数幂,算术平方根,负整数指数幂,幂的乘方与积的乘方进行计算是解此题的关键.
7.(3分)若正多边形的一个外角是45°,则该正多边形的内角和为( )
A.540° B.720° C.900° D.1080°
【分析】先根据多边形的外角和定理求出多边形的边数,再根据多边形的内角和公式求出这个正多边形的内角和.
【解答】解:正多边形的边数为:360°÷45°=8,
∴这个多边形是正八边形,
∴该多边形的内角和为(8﹣2)×180°=1080°.
故选:D.
【点评】本题主要考查了多边形的外角和定理及多边形的内角和公式,关键是掌握内角和公式:(n﹣2)×180°(n≥3且n为整数).
8.(3分)《九章算术》中记载了一个问题,大意是甲、乙两人各带了若干钱.若甲得到乙所有钱的一半,则甲共有钱50.若乙得到甲所有钱的,则乙也共有钱50.甲、乙两人各带了多少钱?设甲带了钱x,乙带了钱y,依题意,下面所列方程组正确的是( )
A. B.
C. D.
【分析】设甲需带钱x,乙带钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.
【解答】解:设甲需带钱x,乙带钱y,
根据题意,得,
故选:A.
【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
9.(3分)如图,拦水坝的横断面为梯形ABCD,其中AD∥BC,∠ABC=45°,∠DCB=30°,斜坡AB长8m,则斜坡CD的长为( )
A.6m B.8m C.4m D.8m
【分析】过A作AE⊥BC于E,过D作DF⊥BC于F,则AE=DF,在Rt△DCF中,根据等腰直角三角形的性质和勾股定理求出AE,在Rt△ABE中,根据等腰直角三角形的性质和勾股定理求出AE.
【解答】解:过A作AE⊥BC于E,过D作DF⊥BC于F,
∴AE∥DF,
∵AD∥BC,
∴AE=DF,
在Rt△ABE中,
AE=ABsin45°=4,
在Rt△DCF中,
∵∠DCB=30°,
∴DF=CD,
∴CD=2DF=2×4=8,
故选:B.
【点评】本题考查了梯形,解直角三角形的应用,正确作出辅助线,构造出直角三角形是解决问题的关键.
10.(3分)已知关于x的一元二次方程ax2﹣4x﹣1=0有两个不相等的实数根,则a的取值范围是( )
A.a≥﹣4 B.a>﹣4 C.a≥﹣4且a≠0 D.a>﹣4且a≠0
【分析】根据一元二次方程的定义和判别式的意义得到a≠0且Δ=(﹣4)2﹣4a×(﹣1)>0,然后求出a的范围后对各选项进行判断.
【解答】解:根据题意得a≠0且Δ=(﹣4)2﹣4a×(﹣1)>0,
解得a>﹣4且a≠0,
故选:D.
【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
11.(3分)下列说法正确的是( )
A.了解市民知晓“礼让行人”交通新规的情况,适合全面调查
B.一组数据5,5,3,4,1的中位数是3
C.甲、乙两人9次跳高成绩的方差分别为S甲2=1.1,S乙2=2.5,说明乙的成绩比甲稳定
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
【分析】根据普查与抽样调查的区别、中位数的定义、方差的意义及随机事件的概念逐一判断即可.
【解答】解:A.了解市民知晓“礼让行人”交通新规的情况,由于调查的工作量较大,适合抽样调查,此选项错误,不符合题意;
B.一组数据5,5,3,4,1,重新排列为1、3、4、5、5,其中位数是4,此选项错误,不符合题意;
C.甲、乙两人9次跳高成绩的方差分别为S甲2=1.1,S乙2=2.5,由S甲2<S乙2,说明甲的成绩比乙稳定,此选项错误,不符合题意;
D.“经过有交通信号灯的路口,遇到红灯”,由于事先无法预测遇到哪种灯,所以此事件是随机事件,此选项正确,符合题意;
故选:D.
【点评】本题主要考查随机事件、抽样调查与全面调查、中位数、方差,解题的关键是掌握普查与抽样调查的区别、中位数的定义、方差的意义及随机事件的概念.
12.(3分)某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,,所在圆的圆心为O,点C,D分别在OA,OB上.已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB=120°,则弯道外边缘的长为( )
A.8πm B.4πm C.πm D.πm
【分析】根据线段的和差得到OA=OC+AC,然后根据弧长公式即可得到结论.
【解答】解:∵OC=12m,AC=4m,
∴OA=OC+AC=12+4=16(m),
∵∠AOB=120°,
∴弯道外边缘的长为:=(m),
故选:C.
【点评】本题考查了弧长的计算,熟练掌握弧长公式l=是解题的关键.
13.(3分)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为( )
A.5 B.6 C.7 D.8
【分析】设八年级有x个班,根据“各班均组队参赛,赛制为单循环形式,且共需安排15场比赛”,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
【解答】解:设八年级有x个班,
依题意得:x(x﹣1)=15,
整理得:x2﹣x﹣30=0,
解得:x1=6,x2=﹣5(不合题意,舍去).
故选:B.
【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
14.(3分)如图,在矩形纸片ABCD中,AB=7,BC=9,M是BC上的点,且CM=2.将矩形纸片ABCD沿过点M的直线折叠,使点D落在AB上的点P处,点C落在点C′处,折痕为MN,则线段PA的长是( )
A.4 B.5 C.6 D.2
【分析】连接PM,设AP=x,可得出PB=7﹣x,BM=7,根据折叠的性质可得CD=PC′=7,CM=C′M=2,在Rt△PBM中和Rt△PC′M中,根据勾股定理PB2+BM2=PM2,PM2=(7﹣x)2+72,C′P2+C′M2=PM2,PM2=72+22,因为PM是公共边,所以可得PM=PM,即(7﹣x)2+72=72+22,求出x的值即可得出答案.
【解答】解:连接PM,如图,
设AP=x,
∵AB=7,CM=2,
∴PB=7﹣x,BM=BC﹣CM=7,
由折叠性质可知,
CD=PC′=7,CM=C′M=2,
在Rt△PBM中,
PB2+BM2=PM2,
PM2=(7﹣x)2+72,
在Rt△PC′M中,
C′P2+C′M2=PM2,
PM2=72+22,
∴(7﹣x)2+72=72+22,
解得:x=5,
∴AP=5.
故选:B.
【点评】本题主要考查了翻折变化、矩形的性质及勾股定理,熟练应用翻折变化的性质及矩形的性质进行计算是解决本题的关键.
15.(3分)如图,已知抛物线y=ax2+bx+c开口向上,与x轴的一个交点为(﹣1,0),对称轴为直线x=1.下列结论错误的是( )
A.abc>0 B.b2>4ac C.4a+2b+c>0 D.2a+b=0
【分析】利用函数图象的开口,与y轴交点坐标,和对称轴,分别判断出a,b,c的正负,可以判断出A选项,由抛物线与x轴交点坐标个数,可以判断Δ=b2﹣4ac的正负,可以判断出B选项,又当x=2时,y=4a+2b+c,根据图象可以判断C选项,由对称轴为x=1,可以判断D选项.
【解答】解:由图象可得,抛物线开口向上,故a>0,
由于抛物线与y轴交点坐标为(0,c),
由图象可得,c<0,
对称轴为x=,
∴,
∴b=﹣2a,
∵a>0,
∴b<0,
∴abc>0,
故A选项正确;
∵抛物线与x轴有两个交点,
∴Δ=b2﹣4ac>0,
∴b2>4ac,
故B选项正确;
由图象可得,当x=2时,y<0,
∴4a+2b+c<0,
故C选项错误;
∵抛物线的对称轴为x=1,
∴,
∴2a+b=0,
故D选项正确,
故选:C.
【点评】此题考查的是二次函数的图象与系数的关系,由开口,对称轴,与y轴交点分别判断出系数的正负,由与x轴交点的个数判断△的正负,这些内容都是解决问题的关键.
二、填空题(本题5小题,每小题5分,共25分)
16.(5分)将直线y=﹣3x向下平移2个单位长度,平移后直线的解析式为 y=﹣3x﹣2 .
【分析】根据平移k值不变,只有b值发生改变解答即可.
【解答】解:由题意得:平移后的解析式为:y=﹣3x﹣2.
故答案为:y=﹣3x﹣2.
【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.
17.(5分)学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8m到达点D处,测得影子DE长是2m,则路灯灯泡A离地面的高度AB为 8.5 m.
【分析】由AB⊥BE,CD⊥BE,得到AB∥CD,推出△ECD∽△EAB,根据相似三角形的性质列方程即可得到结论.
【解答】解:∵AB⊥BE,CD⊥BE,
∴AB∥CD,
∴△ECD∽△EAB,
∴=,
∴=,
解得:AB=8.5,
答:路灯灯泡A离地面的高度AB为8.5米,
故答案为:8.5.
【点评】本题考查了相似三角形的应用,平行线的判定,证得△ECD∽△EAB是解题的关键.
18.(5分)如图,在菱形ABCD中,BC=2,∠C=120°,Q为AB的中点,P为对角线BD上的任意一点,则AP+PQ的最小值为 .
【分析】如图,连接PC,AC,CQ.证明PA=PC,可得PA+PQ=PC+PQ≥CQ,解直角三角形求出CQ,可得结论.
【解答】解:如图,连接PC,AC,CQ.
∵四边形ABCD是菱形,
∴∠ABP=∠PBC,
在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴PA=PC,
∵AB∥CD,
∴∠ABC+∠BCD=120°,
∴∠ABC=180°﹣120°=60°,
∵AB=BC,
∴△ABC是等边三角形,
∵AQ=QB,
∴CQ⊥AB,
∴CQ=BC•sin60°=,
∵PA+PQ=PC+PQ≥CQ,
∴PA+PQ≥,
∴PA+PQ的最小值为.
故答案为:.
【点评】本题考查轴对称最短问题,等边三角形的判定和性质,菱形的性质,解直角三角形等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
19.(5分)如图,在平面直角坐标系中,点N1(1,1)在直线l:y=x上,过点N1作N1M1⊥l,交x轴于点M1;过点M1作M1N2⊥x轴,交直线于N2;过点N2作N2M2⊥l,交x轴于点M2;过点M2作M2N3⊥x轴,交直线l于点N3;…,按此作法进行下去,则点M2021的坐标为 (22021,0) .
【分析】因为直线解析式为y=x,故可以证明直线l是第一象限的角平分线,所以∠N1OM1=45°,所以可以证明△N1OM1为等腰直角三角形,可以利用N1的坐标求出OM1的长度,得到其坐标,用同样的方法求得M2,M3,...,即可解决.
【解答】解:如图1,过N1作N1E⊥x轴于N,过N1作N1F⊥y轴于F,
∵N1(1,1),
∴N1E=N1F=1,
∴∠N1OM1=45°,
∴∠N1OM=∠N1M1O=45°,
∴△N1OM1是等腰直角三角形,
∴N1F=OF=FM1=1,
∴OM1=2,
∴M1(2,0),
同理,△M2ON2是等腰直角三角形,
∴OM2=2OM1=4,
∴M2(4,0),
同理,OM3=2OM2=22OM1=23,
∴,
∴,
∴M4(24,0),
依次类推,故M2021(22021,0),
故答案为(22021,0).
【点评】本题是一道一次函数图象上的点的坐标特征,考查了点的坐标规律,利用直线y=x是第一象限的角平分线是解决本题的突破口.
20.(5分)如图,直线AB与反比例函数y=(k>0,x>0)的图象交于A,B两点,与x轴交于点C,且AB=BC,连接OA.已知△OAC的面积为12,则k的值为 8 .
【分析】根据题意设B(,a),A(,2a),利用待定系数法表示出直线AB的解析式为y=﹣x+3a,则C(,0),根据三角形面积公式得到××2a=12,从而得到k的值.
【解答】解:设AM⊥x轴于M,BN⊥x轴于N,
∴AM∥BN,
∴=,
∵AB=BC,
∴=,
设B(,a),A(,2a),
设直线AB的解析式为y=mx+n,
∴,解得,
∴直线AB的解析式为y=﹣x+3a,
当y=0时,﹣x+3a=0,解得x=,
∴C(,0),
∵△OAC的面积为12,
∴××2a=12,
∴k=8,
故答案为8.
【点评】本题考查了反比例函数与一次函数的交点问题,反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,表示出A、B的坐标是解题的关键.
三、解答题(本题7小题,共80分)
21.(8分)先化简,再求值:÷(a﹣),其中a=2,b=1.
【分析】根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.
【解答】解:÷(a﹣)
=÷
=
=,
当a=2,b=1时,原式==3.
【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
22.(8分)x取哪些正整数值时,不等式5x+2>3(x﹣1)与≤都成立?
【分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得正整数值.
【解答】解:根据题意解不等式组,
解不等式①,得:x>﹣,
解不等式②,得:x≤3,
∴﹣<x≤3,
故满足条件的正整数有1、2、3.
【点评】本题考查的是解一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
23.(10分)学完统计知识后,小明对同学们最近一周的睡眠情况进行随机抽样调查,得到他们每日平均睡眠时长t(单位:小时)的一组数据,将所得数据分为四组(A:t<8,B:8≤t<9,C:9≤t<10,D:t≥10),并绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)小明一共抽样调查了 40 名同学;在扇形统计图中,表示D组的扇形圆心角的度数为 18° ;
(2)将条形统计图补充完整;
(3)小明所在学校共有1400名学生,估计该校最近一周大约有多少名学生睡眠时长不足8小时?
(4)A组的四名学生是2名男生和2名女生,若从他们中任选2人了解最近一周睡眠时长不足8小时的原因,试求恰好选中1名男生和1名女生的概率.
【分析】(1)由B组人数及其所占百分比求出总人数,用360°乘以D组人数所占比例即可;
(2)根据四组总人数为40人求出C组人数,从而补全图形;
(3)用总人数乘以样本中A组人数所占比例;
(4)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.
【解答】解:(1)本次调查的学生人数为22÷55%=40(名),
表示D组的扇形圆心角的度数为360°×=18°,
故答案为:40、18°;
(2)C组人数为40﹣(4+22+2)=12(名),
补全图形如下:
(3)估计该校最近一周睡眠时长不足8小时的人数约为1400×=140(名);
(4)画树状图为:
共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,
所以恰好选中1男1女的概率为=.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
24.(12分)如图,⊙O是△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D,连接BD,BE.
(1)求证:DB=DE;
(2)若AE=3,DF=4,求DB的长.
【分析】(1)依据三角形内心的性质可得∠BAD=∠CAD,∠ABE=∠CBE,由圆周角定理的推论可得∠CAD=∠CBD=∠BAD.从而可证∠BED=∠DBE,根据等角对等边即可得结论;
(2)由∠D=∠D,∠DBF=∠CAD=∠BAD,即可判定△ABD∽△BFD,所以,设EF=x,可化为,解得x=2,从而可求DB的长.
【解答】(1)证明:∵点E是△ABC的内心,
∴AE平分∠BAC,BE平分∠ABC,
∴∠BAD=∠CAD,∠ABE=∠CBE,
又∵∠CAD与∠CBD所对弧为,
∴∠CAD=∠CBD=∠BAD.
∴∠BED=∠ABE+∠BAD,∠DBE=∠CBE+∠CBD,
即∠BED=∠DBE,
故DB=DE.
(2)解:∵∠D=∠D,∠DBF=∠CAD=∠BAD,
∴△ABD∽△BFD,
∴①,
∵DF=4,AE=3,设EF=x,
由(1)可得DB=DE=4+x,
则①式化为,
解得:x1=2,x2=﹣6(不符题意,舍去),
则DB=4+x=4+2=6.
【点评】本题考查了三角形内心的性质、圆周角定理的推论,相似三角形的判定与性质,证明△ABD∽△BFD是解题的关键.
25.(12分)某中学计划暑假期间安排2名老师带领部分学生参加红色旅游.甲、乙两家旅行社的服务质量相同,且报价都是每人1000元.经协商,甲旅行社的优惠条件是:老师、学生都按八折收费;乙旅行社的优惠条件是:两位老师全额收费,学生都按七五折收费.
(1)设参加这次红色旅游的老师学生共有x名,y甲,y乙(单位:元)分别表示选择甲、乙两家旅行社所需的费用,求y甲,y乙关于x的函数解析式;
(2)该校选择哪家旅行社支付的旅游费用较少?
【分析】(1)甲旅行社需要的费用为:0.8×1000x,;乙旅行社的收费为:2×1000+0.75×1000×(x﹣2);
(2)分别用小于号,等于号,大于号连接表示两个旅行社费用的代数式,计算得到费用少的方案即可.
【解答】解:(1)y甲=0.8×1000x=800x,
y乙=2×1000+0.75×1000×(x﹣2)=750x+500;
(2)①y甲<y乙,
800x<750x+500,
解得x<10,
②y甲=y乙,
800x=750x+500,
解得x=10,
③y甲>y乙,
800x>750x+500,
解得x>10,
答:当老师学生数超10人时,选择乙旅行社支付的旅游费用较少;当老师学生数为10人时,两旅行社支付的旅游费用相同;当老师学生数少于10人时,选择甲旅行社支付的旅游费用较少.
【点评】本题考查一次函数的应用;得到两家旅行社所需的费用是解决本题的关键.利用两个关系式进行比较是解决本题的易错点.
26.(14分)如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为△ABC内一点,将线段AD绕点A逆时针旋转90°得到AE,连接CE,BD的延长线与CE交于点F.
(1)求证:BD=CE,BD⊥CE;
(2)如图2,连接AF,DC,已知∠BDC=135°,判断AF与DC的位置关系,并说明理由.
【分析】(1)通过SAS证明△ABD≌△CAE,可得BD=CE,∠ABD=∠ACE,再利用三角形内角和定理可证BD⊥CE;
(2)作AG⊥BF,AH⊥CE,由全等知AG=AH,从而得到AF平分∠BFE,证出∠AFD=∠GDC=45°,从而证出平行.
【解答】证明(1)如图1,∵线段AD绕点A逆时针旋转90°得到AE,
∴AD=AE,∠DAE=90°,
∵∠BAC=90°,
∴∠BAC=∠DAE,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△CAE(SAS),
∴BD=CE,∠ABD=∠ACE,
又∵∠AOB=∠COF,
∴∠BFC=∠BAC=90°,
∴BD⊥CE;
(2)AF∥CD,理由如下:
如图2,作AG⊥BF于G,AH⊥CE于H,
由(1)知△ABD≌△ACE,
∴BD=CE,S△ABD=S△ACE,
∴AG=AH,
又∵AG⊥BF,AH⊥CE,
∴AF平分∠BFE,
又∵∠BFE=90°,
∴∠AFD=45°,
∵∠BDC=135°,
∴∠FDC=45°,
∴∠AFD=∠FDC,
∴AF∥CD.
【点评】本题主要考查了旋转的性质、三角形全等的判定与性质、角平分线的性质等知识,作出辅助线是解题的关键.
27.(16分)如图,抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,顶点为D,点B的坐标为(3,0).
(1)填空:点A的坐标为 (1,0) ,点D的坐标为 (2,﹣1) ,抛物线的解析式为 y=x2﹣4x+3 ;
(2)当二次函数y=x2+bx+c的自变量x满足m≤x≤m+2时,函数y的最小值为,求m的值;
(3)P是抛物线对称轴上一动点,是否存在点P,使△PAC是以AC为斜边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
【分析】(1)由对称轴为直线x=2求出b的值,再将点B(3,0)代入y=x2+bx+c即可求出函数的解析式;
(2)分三种情况求函数在给定范围的最小值:当m+2<2时,(m+2)2﹣4(m+2)+3=;当m>2时,m2﹣4m+3=;当0≤m≤2时,与题意不符;
(3)求出AC=,AC的中点为E(,),设P(2,t),因为△PAC是以AC为斜边的直角三角形,则PE=AC,列出方程即可求出t的值.
【解答】解:(1)∵对称轴为直线x=2,
∴b=﹣4,
∴y=x2﹣4x+c,
∵点B(3,0)是抛物线与x轴的交点,
∴9﹣12+c=0,
∴c=3,
∴y=x2﹣4x+3,
令y=0,x2﹣4x+3=0,
∴x=3或x=1,
∴A(1,0),
∵D是抛物线的顶点,
∴D(2,﹣1),
故答案为(1,0),(2,﹣1),y=x2﹣4x+3;
(2)当m+2<2时,即m<0,
此时当x=m+2时,y有最小值,
则(m+2)2﹣4(m+2)+3=,
解得m=,
∴m=﹣;
当m>2时,此时当x=m时,y有最小值,
则m2﹣4m+3=,
解得m=或m=,
∴m=;
当0≤m≤2时,此时当x=2时,y有最小值为﹣1,与题意不符;
综上所述:m的值为或﹣;
(3)A(1,0),C(0,3),
∴AC=,AC的中点为E(,),
设P(2,t),
∵△PAC是以AC为斜边的直角三角形,
∴PE=AC,
∴=,
∴t=2或t=1,
∴P(2,2)或P(2,1),
∴使△PAC是以AC为斜边的直角三角形时,P点坐标为(2,2)或(2,1).
【点评】本题考查二次函数的综合应用,熟练掌握二次函数解析式的求法,利用直角三角形斜边中线等于斜边的一半,将直角三角形存在性问题转化为边的关系是解题的关键.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2021/7/24 10:33:19;用户:13784622801;邮箱:13784622801;学号:37960971
2019年贵州省毕节市中考数学试卷及答案: 这是一份2019年贵州省毕节市中考数学试卷及答案,共19页。试卷主要包含了选择题,填空题,解答及证明等内容,欢迎下载使用。
2018年贵州省毕节市中考数学试卷及答案: 这是一份2018年贵州省毕节市中考数学试卷及答案,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2020年贵州省毕节市中考数学试卷: 这是一份2020年贵州省毕节市中考数学试卷,共12页。