所属成套资源:2019年人教版全国各省市中考数学真题答案及解析汇总
2019年人教版江苏省扬州市中考数学试卷及答案解析
展开
这是一份2019年人教版江苏省扬州市中考数学试卷及答案解析,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2019年江苏省扬州市中考数学试卷
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.(3分)下列图案中,是中心对称图形的是( )
A. B. C. D.
2.(3分)下列各数中,小于﹣2的数是( )
A.﹣ B.﹣ C.﹣ D.﹣1
3.(3分)分式可变形为( )
A. B.﹣ C. D.﹣
4.(3分)一组数据3、2、4、5、2,则这组数据的众数是( )
A.2 B.3 C.3.2 D.4
5.(3分)如图所示物体的左视图是( )
A. B.
C. D.
6.(3分)若点P在一次函数y=﹣x+4的图象上,则点P一定不在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.(3分)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有( )
A.4个 B.5个 C.6个 D.7个
8.(3分)若反比例函数y=﹣的图象上有两个不同的点关于y轴的对称点都在一次函数y=﹣x+m的图象上,则m的取值范围是( )
A.m>2 B.m<﹣2
C.m>2或m<﹣2 D.﹣2<m<2
二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程请把答案直接填写在答题卡相应位置上)
9.(3分)2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全长约1790000米,数据1790000米用科学记数法表示为 .
10.(3分)分解因式:a3b﹣9ab= .
11.(3分)扬州某毛绒玩具厂对一批毛绒玩具进行质鼠抽检的结果如下:
抽取的毛绒玩具数n
20
50
100
200
500
1000
1500
2000
优等品的频数m
19
17
91
184
462
921
1379
1846
优等品的频率
0.950
0.940
0.910
0.920
0.924
0.921
0.919
0.923
从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是 .(精确到0.01)
12.(3分)一元二次方程x(x﹣2)=x﹣2的根是 .
13.(3分)计算:(﹣2)2018(+2)2019的结果是 .
14.(3分)将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD= .
15.(3分)如图,AC是⊙O的内接正六边形的一边,点B在上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n= .
16.(3分)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN= .
17.(3分)如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置,若AB=16cm,则图中阴影部分的面积为 .
18.(3分)如图,在△ABC中,AB=5,AC=4,若进行以下操作,在边BC上从左到右依次取点D1、D2、D3、D4、…;过点D1作AB、AC的平行线分别交AC、AB于点E1、F1;过点D1作AB、AC的平行线分别交AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交AC、AB于点E3、F3…,则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)= .
三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
19.(8分)计算或化简:
(1)﹣(3﹣π)0﹣4cos45°;
(2)+.
20.(8分)解不等式组,并写出它的所有负整数解.
21.(8分)扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.
每天课外阅读时间t/h
频数
频率
0<t≤0.5
24
0.5<t≤1
36
0.3
1<t≤1.5
0.4
1.5<t≤2
12
b
合计
a
1
根据以上信息,回答下列问题:
(1)表中a= ,b= ;
(2)请补全频数分布直力图;
(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.
22.(8分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润从哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:“每个大于2的偶数都可以表示为两个素数的和”.如20=3+17.
(1)若从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是 ;
(2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,再用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.
23.(10分)“绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天修多少米?
24.(10分)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.
(1)求证:∠BEC=90°;
(2)求cos∠DAE.
25.(10分)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC.
(1)求证:BC是⊙O的切线;
(2)已知∠BAO=25°,点Q是上的一点.
①求∠AQB的度数;
②若OA=18,求的长.
26.(10分)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分別为A1,B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,AD)或T,特别地线段AC在直线l2上的正投影就是线段A1C.
请依据上述定义解决如下问题:
(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;
(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)═9,求△ABC的面积;
(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD),
27.(12分)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.
(1)若a=12.
①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为 ;
②在运动过程中,求四边形AMQP的最大面积;
(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.
28.(12分)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把△ABC沿直线1折叠,点B的对应点是点B′.
(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为 ;
(2)如图2,当PB=5时,若直线1∥AC,则BB′的长度为 ;
(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,△ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;
(4)当PB=6时,在直线1变化过程中,求△ACB′面积的最大值.
2019年江苏省扬州市中考数学试卷
参考答案与试题解析
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、不是中心对称图形,故此选项错误;
D、是中心对称图形,正确.
故选:D.
2.解:比﹣2小的数是应该是负数,且绝对值大于2的数,
分析选项可得,﹣<﹣2<﹣<﹣<﹣1,只有A符合.
故选:A.
3.解:分式可变形为:﹣.
故选:D.
4.解:在这组数据中2出现了2次,出现的次数最多,则这组数据的众数是2;
故选:A.
5.解:左视图为:,
故选:B.
6.解:∵﹣1<0,4>0,
∴一次函数y=﹣x+4的图象经过第一、二、四象限,即不经过第三象限.
∵点P在一次函数y=﹣x+4的图象上,
∴点P一定不在第三象限.
故选:C.
7.解:①若n+2<n+8≤3n,则
,
解得,即4≤n<10,
∴正整数n有6个:4,5,6,7,8,9;
②若n+2<3n≤n+8,则
,
解得,即2<n≤4,
∴正整数n有2个:3和4;
综上所述,满足条件的n的值有7个,
故选:D.
8.解:∵反比例函数y=﹣的图象上有两个不同的点关于y轴的对称点在反比例函数y=的图象上,
∴解方程组得x2﹣mx+2=0,
∵y=的图象与一次函数y=﹣x+m有两个不同的交点,
∴方程x2﹣mx+2=0有两个不同的实数根,
∴△=m2﹣8>0,
∴m>2或m<﹣2,
故选:C.
二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程请把答案直接填写在答题卡相应位置上)
9.解:数据1790000米用科学记数法表示为1.79×106,
故答案为:1.79×106.
10.解:a3b﹣9ab=a(a2﹣9)=ab(a+3)(a﹣3).
故答案为:ab(a+3)(a﹣3).
11.解:从这批毛绒玩具中,任意抽取一个毛绒玩具是优等品的概率的估计值是0.92,
故答案为0.92.
12.解:x(x﹣2)=x﹣2,
x(x﹣2)﹣(x﹣2)=0,
(x﹣2)(x﹣1)=0,
x﹣2=0,x﹣1=0,
x1=2,x2=1,
故答案为:1或2.
13.解:原式=[(﹣2)(+2)]2018•(+2)2019
=(5﹣4)2018•(+2)
=+2,
故答案为+2.
14.解:延长DC,
由题意可得:∠ABC=∠BCE=∠BCA=26°,
则∠ACD=180°﹣26°﹣26°=128°.
故答案为:128°.
15.解:连接BO,
∵AC是⊙O内接正六边形的一边,
∴∠AOC=360°÷6=60°,
∵BC是⊙O内接正十边形的一边,
∴∠BOC=360°÷10=36°,
∴∠AOB=∠AOC﹣∠BOC=60°﹣36°=24°,
∴n=360°÷24°=15;
故答案为:15.
16.解:连接CF,
∵正方形ABCD和正方形BEFG中,AB=7,BE=5,
∴GF=GB=5,BC=7,
∴GC=GB+BC=5+7=12,
∴=13.
∵M、N分别是DC、DF的中点,
∴MN==.
故答案为:.
17.解:由旋转的性质得:∠BAB'=45°,四边形AB'C'D'≌四边形ABCD,
则图中阴影部分的面积=四边形ABCD的面积+扇形ABB'的面积﹣四边形AB'C'D'的面积=扇形ABB'的面积==2π;
故答案为:2π.
18.解:∵D1F1∥AC,D1E1∥AB,
∴,即,
∵AB=5,BC=4,
∴4D1E1+5D1F1=20,
同理4D2E2+5D2F2=20,…,4D2019E2019+5D2019F2019=20,
∴4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)=20×2019=40380;
故答案为40380.
三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
19.解:(1)原式=2﹣1﹣4×
=2﹣1﹣2
=﹣1;
(2)原式=﹣
=
=
=a﹣1.
20.解:解不等式4(x+1)≤7x+13,得:x≥﹣3,
解不等式x﹣4<,得:x<2,
则不等式组的解集为﹣3≤x<2,
所以不等式组的所有负整数解为﹣3、﹣2、﹣1.
21.解:(1)a=36÷0.3=120,b=12÷120=0.1,
故答案为:120,0.1;
(2)1<t≤1.5的人数为120×0.4=48,
补全图形如下:
(3)估计该校学生每天课外阅读时间超过1小时的人数为1200×(0.4+0.1)=600(人).
22.解:(1)从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是.
故答案为.
(2)树状图如图所示:
共有12种可能,满足条件的有4种可能,
所以抽到的两个素数之和等于30的概率==
23.解:设甲工程队每天修x米,则乙工程队每天修(1500﹣x)米,根据题意可得:
=,
解得:x=900,
经检验得:x=900是原方程的根,
故1500﹣900=600(m),
答:甲工程队每天修900米,乙工程队每天修600米.
24.(1)证明:∵四边形ABCD是平行四边形,
∴DC=AB=,AD=BC,DC∥AB,
∴∠DEA=∠EAB,
∵AE平分∠DAB,
∴∠DAE=∠EAB,
∴∠DAE=∠DEA
∴AD=DE=10,
∴BC=10,AB=CD=DE+CE=16,
∵CE2+BE2=62+82=100=BC2,
∴△BCE是直角三角形,∠BEC=90°;
(2)解:∵AB∥CD,
∴∠ABE=∠BEC=90°,
∴AE===8,
∴cos∠DAE=cos∠EAB===.
25.(1)证明:连接OB,
∵OA=OB,
∴∠OAB=∠OBA,
∵PC=CB,
∴∠CPB=∠PBC,
∵∠APO=∠CPB,
∴∠APO=∠CBP,
∵OC⊥OA,
∴∠AOP=90°,
∴∠OAP+∠APO=90°,
∴∠CBP+∠ABO=90°,
∴∠CBO=90°,
∴BC是⊙O的切线;
(2)解:①∵∠BAO=25°,
∴∠ABO=25°,∠APO=65°,
∴∠POB=∠APO﹣∠ABO=40°,
∴∠AQB=(∠AOP+∠POB)=130°=65°;
②∵OA=18,∠AQB=65°,
∴的长==π.
26.解:(1)如图1中,作CH⊥AB.
∵T(AC,AB)=3,
∴AH=3,
∵AB=5,
∴BH=5﹣3=2,
∴T(BC,AB)=BH=2,
故答案为2.
(2)如图2中,作CH⊥AB于H.
∵T(AC,AB)=4,T(BC,AB)═9,
∴AH=4,BH=9,
∵∠ACB=∠CHA=∠CHB=90°,
∴∠A+∠ACH=90°,∠ACH+∠BCH=90°,
∴∠A=∠BCH,
∴△ACH∽△CBH,
∴=,
∴=,
∴CH=6,
∴S△ABC=•AB•CH=×13×6=39.
(3)如图3中,作CH⊥AD于H,BK⊥CD于K.
∵∠ACD=90°,T(AD,AC)=2,
∴AC=2,
∵∠A=60°,
∴∠ADC=∠BDK=30°,
∴CD=AC=2,AD=2AC=4,AH=AC=1,DH=AD﹣AH=3,
∵T(BC,AB)=6,CH⊥AB,
∴BH=6,
∴DB=BH﹣DH=3,
在Rt△BDK中,∵∠K=90°,BD=3,∠BDK=30°,
∴DK=BD•cos30°=,
∴CK=CD+DK=2+=,
∴T(BC,CD)=CK=.
27.(1)解:①P在线段AD上,PQ=AB=20,AP=x,AM=12,
四边形AMQP的面积=(12+20)x=48,
解得:x=3;
故答案为:3;
②当P,在AD上运动时,P到D点时四边形AMQP面积最大,为直角梯形,
∴0<x≤10时,四边形AMQP面积的最大值=(12+20)10=160,
当P在DG上运动,10<x≤20,四边形AMQP为不规则梯形,
作PH⊥AB于M,交CD于N,作GE⊥CD于E,交AB于F,如图2所示:
则PM=x,PN=x﹣10,EF=BC=10,
∵△GDC是等腰直角三角形,
∴DE=CE,GE=CD=10,
∴GF=GE+EF=20,
∴GH=20﹣x,
由题意得:PQ∥CD,
∴△GPQ∽△GDC,
∴=,
即=,
解得:PQ=40﹣2x,
∴梯形AMQP的面积=(12+40﹣2x)×x=﹣x2+26x=﹣(x﹣13)2+169,
∴当x=13时,四边形AMQP的面积最大=169;
(2)解:P在DG上,则10≤x≤20,AM=a,PQ=40﹣2x,
梯形AMQP的面积S=(a+40﹣2x)×x=﹣x2+x,对称轴为:x=10+,
∵0≤x≤20,
∴10≤10+≤15,对称轴在10和15之间,
∵10≤x≤20,二次函数图象开口向下,
∴当x=20时,S最小,
∴﹣202+×20≥50,
∴a≥5;
综上所述,a的取值范围为5≤a≤20.
28.解:(1)如图1中,
∵△ABC是等边三角形,
∴∠A=60°,AB=BC=AC=8,
∵PB=4,
∴PB′=PB=PA=4,
∵∠A=60°,
∴△APB′是等边三角形,
∴AB′=AP=4.
故答案为4.
(2)如图2中,设直线l交BC于点E.连接BB′交PE于O.
∵PE∥AC,
∴∠BPE=∠A=60°,∠BEP=∠C=60°,
∴△PEB是等边三角形,
∵PB=5,
∴∵B,B′关于PE对称,
∴BB′⊥PE,BB′=2OB
∴OB=PB•sin60°=,
∴BB′=5.
故答案为5.
(3)如图3中,结论:面积不变.
∵B,B′关于直线l对称,
∴BB′⊥直线l,
∵直线l⊥AC,
∴AC∥BB′,
∴S△ACB′=S△ACB=•82=16.
(4)如图4中,当B′P⊥AC时,△ACB′的面积最大,
设直线PB′交AC于E,
在Rt△APE中,∵PA=2,∠PAE=60°,
∴PE=PA•sin60°=,
∴B′E=6+,
∴S△ACB′的最大值=×8×(6+)=4+24.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/6/24 9:36:55;用户:15708455779;邮箱:15708455779;学号:24405846
相关试卷
这是一份2023年江苏省扬州市中考数学试卷(含答案解析),共22页。试卷主要包含了 实数−3的绝对值是, 空气的成分是, 函数y=1x2的大致图象是, 分解因式等内容,欢迎下载使用。
这是一份2023年江苏省扬州市中考数学试卷(含答案解析),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年江苏省扬州市中考数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。