终身会员
搜索
    上传资料 赚现金
    2018-2019学年北京市西城区高二(上)期末数学试卷
    立即下载
    加入资料篮
    2018-2019学年北京市西城区高二(上)期末数学试卷01
    2018-2019学年北京市西城区高二(上)期末数学试卷02
    2018-2019学年北京市西城区高二(上)期末数学试卷03
    还剩12页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2018-2019学年北京市西城区高二(上)期末数学试卷

    展开
    这是一份2018-2019学年北京市西城区高二(上)期末数学试卷,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2018-2019学年北京市西城区高二(上)期末数学试卷
    一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.
    1.(4分)椭圆的离心率为(  )
    A. B. C. D.
    2.(4分)命题“对任意的x∈R,x2﹣1>0”的否定是(  )
    A.不存在x∈R,x2﹣1>0 B.存在x∈R,x2﹣1<0
    C.存在x∈R,x2﹣1≤0 D.对任意的x∈R,x2﹣1≤0
    3.(4分)数列{an}的前n项和为Sn,且a1=3,,则S5等于(  )
    A.32 B.48 C.62 D.93
    4.(4分)已知点A(2,0,1),B(4,2,3),P是AB中点,则点P的坐标为(  )
    A.P(3,1,2) B.P(3,1,4) C.P(0,﹣2,﹣1) D.P(6,4,5)
    5.(4分)平面α经过三点O(0,0,0),A(2,2,0),B(0,0,2),则平面α的法向量可以是(  )
    A.(1,0,1) B.(1,0,﹣1) C.(0,1,1) D.(﹣1,1,0)
    6.(4分)如果a<b<0,那么下列不等式中正确的是(  )
    A.b2>ab B.ab>a2 C.a2>b2 D.|a|<|b|
    7.(4分)已知双曲线的一条渐近线方程为,一个焦点坐标为(2,0),则双曲线C的方程为(  )
    A. B.
    C. D.
    8.(4分)已知数列{an}是等比数列,则“a2>a1”是“数列{an}为递增数列”的(  )
    A.充分而不必要条件 B.必要而不充分条件
    C.充分必要条件 D.既不充分也不必要条件
    9.(4分)某采摘园的樱桃前n年的总产量Sn与n之间的关系如图所示,从图中记录的结果看,前x年的平均产量最高,第y年的年产量最高,则x和y的值分别为(  )

    A.7和4 B.7和8 C.10和4 D.10和10
    10.(4分)已知|x|>y>0.将四个数按照一定顺序排列成一个数列,则(  )
    A.当x>0时,存在满足已知条件的x,y,四个数构成等比数列
    B.当x>0时,存在满足已知条件的x,y,四个数构成等差数列
    C.当x<0时,存在满足已知条件的x,y,四个数构成等比数列
    D.当x<0时,存在满足已知条件的x,y,四个数构成等差数列
    二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.
    11.(5分)抛物线y2=﹣4x的焦点坐标为   .
    12.(5分)在数列中,是它的第   项.
    13.(5分)不等式1的解集为   .
    14.(5分)如图,在正方体ABCD﹣A1B1C1D1中,E为CC1中点,则CD1与平面ADD1A1所成角的大小为   ;CD与AE所成角的余弦值为   .

    15.(5分)设函数.
    ①当a=1时,f(x)在区间(0,+∞)上的最小值为   ;
    ②若f(x)在区间(2,+∞)上存在最小值,则满足条件的一个a的值为   .
    16.(5分)已知椭圆C1,抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为坐标原点.如表给出坐标的五个点中,有两个点在C1上,另有两个点在C2上.则椭圆C1的方程为   ,C1的左焦点到C2的准线之间的距离为   .
    x
    1
    3
    ﹣2
    4

    y


    0
    ﹣4

    三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.
    17.(13分)已知等差数列{an}的公差为2,且a1,a3,a4成等比数列.
    (Ⅰ)求{an}的通项公式;
    (Ⅱ)设{an}的前n项和为Sn,求S20的值.
    18.(13分)已知函数f(x)=x2﹣2ax,a∈R.
    (Ⅰ)当a=1时,求满足f(x)<0的x的取值范围;
    (Ⅱ)解关于x的不等式f(x)<3a2;
    (Ⅲ)若对于任意的x∈(2,+∞),f(x)>0均成立,求a的取值范围.
    19.(13分)已知椭圆长轴是短轴的倍,且右焦点为F(1,0).
    (Ⅰ)求椭圆C的标准方程;
    (Ⅱ)直线l:y=k(x+2)交椭圆C于A,B两点,若线段AB中点的横坐标为,求直线l的方程及△FAB的面积.
    20.(14分)如图,四棱锥S﹣ABCD的底面是直角梯形,AB∥CD,∠BAD=∠ADC=90°.SD⊥平面ABCD,M是SA的中点,AD=SD=CD=2AB=2.
    (Ⅰ)证明:DM⊥平面SAB;
    (Ⅱ)求二面角A﹣SB﹣C的大小;
    (Ⅲ)线段SC上是否存在一点E,使得直线SA∥平面BDE.若存在,确定E点的位置;若不存在,说明理由.

    21.(14分)已知椭圆(a>b>0)的离心率为,左顶点B与右焦点F2之间的距离为3.
    (Ⅰ)求椭圆C的标准方程;
    (Ⅱ)设直线x=t(t>a)交x轴于点S,过F2且斜率不为0的直线l与椭圆C相交于两点M,N,连接BM,BN并延长分别与直线x=t交于两点P,Q.若∠PF2S=∠F2QS,求点S的坐标.
    22.(13分)已知a为实数,数列{an}满足a1=a,.
    (Ⅰ)当a=0.2和a=7时,分别写出数列{an}的前5项;
    (Ⅱ)证明:当a>3时,存在正整数m,使得0<am≤2;
    (Ⅲ)当0≤a≤1时,是否存在实数a及正整数n,使得数列{an}的前n项和Sn=2019?若存在,求出实数a及正整数n的值;若不存在,请说明理由.

    2018-2019学年北京市西城区高二(上)期末数学试卷
    参考答案与试题解析
    一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.
    1.(4分)椭圆的离心率为(  )
    A. B. C. D.
    【解答】解:椭圆1,可得a=2,b,c=1,所以椭圆的离心率是:e.
    故选:B.
    2.(4分)命题“对任意的x∈R,x2﹣1>0”的否定是(  )
    A.不存在x∈R,x2﹣1>0 B.存在x∈R,x2﹣1<0
    C.存在x∈R,x2﹣1≤0 D.对任意的x∈R,x2﹣1≤0
    【解答】解:根据题意得,命题“对任意的x∈R,x2﹣1>0”的否定是存在x∈R,x2﹣1≤0;
    故选:C.
    3.(4分)数列{an}的前n项和为Sn,且a1=3,,则S5等于(  )
    A.32 B.48 C.62 D.93
    【解答】解:由a1=3,,可知数列是以3为首项,以2为公比的等比数列,
    则.
    故选:D.
    4.(4分)已知点A(2,0,1),B(4,2,3),P是AB中点,则点P的坐标为(  )
    A.P(3,1,2) B.P(3,1,4) C.P(0,﹣2,﹣1) D.P(6,4,5)
    【解答】解:根据题意,点A(2,0,1),B(4,2,3),P是AB中点,
    则点P的坐标为(,,),即(3,1,2);
    故选:A.
    5.(4分)平面α经过三点O(0,0,0),A(2,2,0),B(0,0,2),则平面α的法向量可以是(  )
    A.(1,0,1) B.(1,0,﹣1) C.(0,1,1) D.(﹣1,1,0)
    【解答】解:∵平面α经过三点O(0,0,0),A(2,2,0),B(0,0,2),
    ∴(2,2,0),(0,0,2),
    设平面α的法向量(x,y,z),
    则,取x=﹣1,得(﹣1,1,0),
    ∴平面α的法向量可以是(﹣1,1,0).
    故选:D.
    6.(4分)如果a<b<0,那么下列不等式中正确的是(  )
    A.b2>ab B.ab>a2 C.a2>b2 D.|a|<|b|
    【解答】解:∵a<b<0;
    ∴b2<ab,ab<a2,﹣a>﹣b>0;
    ∴a2>b2,|a|>|b|;
    ∴C正确.
    故选:C.
    7.(4分)已知双曲线的一条渐近线方程为,一个焦点坐标为(2,0),则双曲线C的方程为(  )
    A. B.
    C. D.
    【解答】解:双曲线的一条渐近线方程是,
    可得,它的一个焦点坐标为(2,0),可得c=2,即a2+b2=4,
    解得a=1,b,
    所求双曲线方程为:.
    故选:C.
    8.(4分)已知数列{an}是等比数列,则“a2>a1”是“数列{an}为递增数列”的(  )
    A.充分而不必要条件 B.必要而不充分条件
    C.充分必要条件 D.既不充分也不必要条件
    【解答】解:设等比数列{an}的公比为q,则“a2>a1”⇔a1(q﹣1)>0,⇔,或.
    由数列{an}为递增数列,可得,或.
    ∴“a2>a1”是“数列{an}为递增数列”的必要不充分条件.
    故选:B.
    9.(4分)某采摘园的樱桃前n年的总产量Sn与n之间的关系如图所示,从图中记录的结果看,前x年的平均产量最高,第y年的年产量最高,则x和y的值分别为(  )

    A.7和4 B.7和8 C.10和4 D.10和10
    【解答】解:前n年的总产量Sn与n在图中对应P(Sn,n)点,
    则前n年的年平均产量即为直线OP的斜率,
    由图易得当n=7时,直线OP的斜率最大,
    即前7年的年平均产量最高,x=7;
    又an=Sn﹣Sn﹣1,所以变化量最大的是第4年,即y=4.
    故选:A.
    10.(4分)已知|x|>y>0.将四个数按照一定顺序排列成一个数列,则(  )
    A.当x>0时,存在满足已知条件的x,y,四个数构成等比数列
    B.当x>0时,存在满足已知条件的x,y,四个数构成等差数列
    C.当x<0时,存在满足已知条件的x,y,四个数构成等比数列
    D.当x<0时,存在满足已知条件的x,y,四个数构成等差数列
    【解答】解:当x>0时,x>y>0,此时四个数的大小关系为x﹣yx<x+y,
    若x﹣y,,x,x+y成等比,则满足()2=(x﹣y)x,即x2﹣y2=x2﹣xy,此时﹣y2=﹣xy,则x=y,不满足条件.故A错误,
    若x﹣y,,x,x+y成等差,则满足2xx+y,即x﹣y,平方得(x2﹣y2)=(x﹣y)2,即(x﹣y)(x+y)=(x﹣y)2,
    则x+y=x﹣y,即y=0,不满足条件.故B错误,
    当x<0时,﹣x>y>0,则y>0,x<0,x+y<0,x﹣y<0,此时四个数x﹣y,,x,x+y,中三个为负数,一个为正数,不可能为等比数列,故C错误,
    当x<0时,四个数的大小为x﹣y<x<x+y,
    若x﹣y,x,x+y,,成等差,
    2x=x﹣y+x+y,此时恒成立,同时2(x+y)=x,即x+2y,
    平方得x2﹣y2=x2+4y2+4xy,
    即5y2=﹣4xy,即xy时,满足等差数列,故D正确.
    故选:D.
    二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.
    11.(5分)抛物线y2=﹣4x的焦点坐标为 (﹣1,0) .
    【解答】解:根据抛物线的性质可知根据抛物线方程可知抛物线的开口向左,且2P=4,即p=2,开口向左
    ∴焦点坐标为(﹣1,0)
    故答案为:(﹣1,0)
    12.(5分)在数列中,是它的第 7 项.
    【解答】解:令,解得n=7.
    ∴是它的第7项.
    故答案为:7.
    13.(5分)不等式1的解集为 {x|1<x<2} .
    【解答】解:∵1,
    ∴0,
    ∴(x﹣1)(x﹣2)<0,
    解得:1<x<2.
    ∴不等式1的解集为{x|1<x<2}.
    故答案为:{x|1<x<2}.
    14.(5分)如图,在正方体ABCD﹣A1B1C1D1中,E为CC1中点,则CD1与平面ADD1A1所成角的大小为 45° ;CD与AE所成角的余弦值为  .

    【解答】解:在正方体ABCD﹣A1B1C1D1中,E为CC1中点,
    ∵CD⊥ADD1A1,
    ∴∠CD1D是平面则CD1与平面ADD1A1所成角,
    ∵CD=DD1,CD⊥DD1,
    ∴∠CD1D=45°,
    ∴平面则CD1与平面ADD1A1所成角的大小为45°;
    ∵CD∥AB,∴∠BAE是CD与AE所成角(或所成角的补角),
    设AB=2,则AE3,
    ∴CD与AE所成角的余弦值为cos∠BAE.
    故答案为:45°,.

    15.(5分)设函数.
    ①当a=1时,f(x)在区间(0,+∞)上的最小值为 2 ;
    ②若f(x)在区间(2,+∞)上存在最小值,则满足条件的一个a的值为 5 .
    【解答】解:①当a=1时,f(x)=x22,当且仅当x=1时,取得最小值2;
    ②若f(x)在区间(2,+∞)上存在最小值,
    由f(x)的导数为f′(x)=1,
    当x时,f′(x)>0,f(x)递增;0<x时,f′(x)<0,f(x)递减,
    可得f(x)在x处取得极小值,由题意可得且为最小值,
    即有2,可得a>4.
    可取a=5.
    故答案为:2,5.
    16.(5分)已知椭圆C1,抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为坐标原点.如表给出坐标的五个点中,有两个点在C1上,另有两个点在C2上.则椭圆C1的方程为  ,C1的左焦点到C2的准线之间的距离为  .
    x
    1
    3
    ﹣2
    4

    y


    0
    ﹣4

    【解答】解:由表可知:抛物线C2焦点在x轴的正半轴,
    设抛物线C2:y2=2px(p>0),
    则有2p(x≠0),
    据此验证四个点知(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,
    ∴抛物线C2的标准方程为y2=4x.则焦点坐标为(1,0),准线方程为:x=﹣1,
    设椭圆C1:1(a>b>0),
    把点(﹣2,0),(,)代入得,a=2,1,
    解得b=1,
    ∴C1的标准方程为y2=1;
    由c,
    左焦点(,0),
    C1的左焦点到C2的准线之间的距离1.
    故答案为:y2=1,1.
    三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.
    17.(13分)已知等差数列{an}的公差为2,且a1,a3,a4成等比数列.
    (Ⅰ)求{an}的通项公式;
    (Ⅱ)设{an}的前n项和为Sn,求S20的值.
    【解答】解:(Ⅰ)因为a1,a3,a4成等比数列,所以.…………………(2分)
    所以,…………………(4分)
    又{an}的公差为2,所以,
    解得a1=﹣8.…………………(7分)
    所以{an}的通项公式为an=2n﹣10.…………………(9分)
    (Ⅱ)(11分)
    =10(a1+a1+19d)=10(﹣16+19×2)=220.…………………(13分)
    所以,S20的值为220.
    18.(13分)已知函数f(x)=x2﹣2ax,a∈R.
    (Ⅰ)当a=1时,求满足f(x)<0的x的取值范围;
    (Ⅱ)解关于x的不等式f(x)<3a2;
    (Ⅲ)若对于任意的x∈(2,+∞),f(x)>0均成立,求a的取值范围.
    【解答】解:(Ⅰ)根据题意,当a=1时,f(x)=x2﹣2x,
    所以f(x)<0,即x2﹣2x<0,解得0<x<2.
    所以f(x)<0的解集为(0,2);
    (Ⅱ)由f(x)<3a2,得 x2﹣2ax﹣3a2<0,
    所以 (x﹣3a)(x+a)<0,
    当a>0时,解集为(﹣a,3a);
    当 a=0时,解集为空集;
    当a<0时,解集为(3a,﹣a).
    (Ⅲ)f(x)>0,即x2﹣2ax>0,变形可得2ax<x2.
    又由x∈(2,+∞),则在x∈(2,+∞)上恒成立;
    则有a≤1.
    即a的取值范围是(﹣∞,1].
    19.(13分)已知椭圆长轴是短轴的倍,且右焦点为F(1,0).
    (Ⅰ)求椭圆C的标准方程;
    (Ⅱ)直线l:y=k(x+2)交椭圆C于A,B两点,若线段AB中点的横坐标为,求直线l的方程及△FAB的面积.
    【解答】解:(Ⅰ)因为长轴是短轴的倍,所以.
    因为焦点F的坐标为(1,0),所以c=1.
    结合a2=b2+c2,
    得.
    所以椭圆方程为.
    (Ⅱ)设A(x1,y1),B(x2,y2).
    由得(2k2+1)x2+8k2x+8k2﹣2=0.
    则 .
    因为线段AB中点的横坐标为,
    所以 .
    解得 ,即(符合题意).
    所以直线l的方程为,
    因为 .
    点F到直线l的距离.
    所以△FAB的面积 .
    即△FAB的面积等于1.
    20.(14分)如图,四棱锥S﹣ABCD的底面是直角梯形,AB∥CD,∠BAD=∠ADC=90°.SD⊥平面ABCD,M是SA的中点,AD=SD=CD=2AB=2.
    (Ⅰ)证明:DM⊥平面SAB;
    (Ⅱ)求二面角A﹣SB﹣C的大小;
    (Ⅲ)线段SC上是否存在一点E,使得直线SA∥平面BDE.若存在,确定E点的位置;若不存在,说明理由.

    【解答】(本小题满分14分)
    证明:(Ⅰ)因为SD⊥平面ABCDDA,DC⊂平面ABCD.
    所以SD⊥DA,SD⊥DC,又DA⊥DC.
    如图,以D为原点建立空间直角坐标系.
    由题意得D(0,0,0),A(2,0,0),B(2,1,0),C(0,2,0),S(0,0,2),M(1,0,1),
    所以,,.
    所以,,
    所以DM⊥SA,DM⊥AB,
    所以DM⊥平面SAB.
    解:(Ⅱ)设平面SBC的法向量为(x,y,z),
    因为.
    所以,即,
    令x=1,则y=2,z=2.于是(1,2,2).
    因为DM⊥平面SAB,所以为平面SAB的法向量,
    又.
    所以cos.
    因为所求二面角为钝角,所以二面角A﹣SB﹣C大小为135o.
    (Ⅲ)设,

    ,.
    设平面BDE的法向量n2=(x0,y0,z0),
    则,即,
    令x0=1,y0=﹣2,.于是(1,﹣2,),
    如果直线SA∥平面BDE,
    那么0,解得 .
    所以,存在点E为线段SC靠近S点的三等分点,使得直线SA∥平面BDE.

    21.(14分)已知椭圆(a>b>0)的离心率为,左顶点B与右焦点F2之间的距离为3.
    (Ⅰ)求椭圆C的标准方程;
    (Ⅱ)设直线x=t(t>a)交x轴于点S,过F2且斜率不为0的直线l与椭圆C相交于两点M,N,连接BM,BN并延长分别与直线x=t交于两点P,Q.若∠PF2S=∠F2QS,求点S的坐标.
    【解答】解:(Ⅰ)由题意可知 且a+c=3,
    解得 a=2,c=1.
    所以b2=a2﹣c2=3.
    所以椭圆的方程是 .
    (Ⅱ)设M,N的坐标分别为(x1,y1),(x2,y2),

    直线l的方程为x=my+1,
    易知点S(t,0),
    将直线l的方程与椭圆方程联立,消去x,得(3m2+4)y2+6my﹣9=0.
    所以 ①,②.
    设P,Q两点的坐标分别为(t,yP),(t,yQ),
    由B,M,P三点共线,得:,从而;
    由B,N,Q三点共线,得 ,从而;
    因为∠PF2S=∠F2QS,所以.
    所以 ,即 ,
    整理得 .
    又 x1=my1+1,x2=my2+1,
    所以 (*).
    将①,②代入(*),整理得.
    解之,得t=4或t=0(舍).
    所以S点的坐标为(4,0).
    22.(13分)已知a为实数,数列{an}满足a1=a,.
    (Ⅰ)当a=0.2和a=7时,分别写出数列{an}的前5项;
    (Ⅱ)证明:当a>3时,存在正整数m,使得0<am≤2;
    (Ⅲ)当0≤a≤1时,是否存在实数a及正整数n,使得数列{an}的前n项和Sn=2019?若存在,求出实数a及正整数n的值;若不存在,请说明理由.
    【解答】(Ⅰ)解:当a=0.2时,a1=0.2,a2=3.8,a3=0.8,a4=3.2,a5=0.2;
    当a=7时,a1=7,a2=4,a3=1,a4=3,a5=1.
    (Ⅱ)证明:当a>3时,an+1=an﹣3.
    所以,在数列{an}中直到第一个小于等于3的项出现之前,数列{an}是以a为首项,﹣3为公差的递减的等差数列.
    即an=a+(n﹣1)(﹣3)=a+3﹣3n.
    所以,当n足够大时,总可以找到n0,使.
    (1)若,令m=n0,则存在正整数m,使得0<am≤2.
    (2)若,由,得,
    令m=n0+1,则存在正整数m,使得0<am≤2.
    综述所述,则存在正整数m,使得0<am≤2.
    (Ⅲ)①当a=0时,a1=0,a2=4,a3=1,a4=3,a5=1,……
    当n=1时,S1=0≠2019,
    当n≥2时,(k∈N),
    令2n﹣1=2019,n=1010,而此时n=2k+1为奇数,所以不成立;
    又2n=2019不成立,所以不存在正整数n,使得Sn=2019.
    ②当0<a<1时,a1=a,a2=﹣a+4,a3=﹣a+1,a4=a+3,a5=a,……
    所以数列{an}的周期是4,
    当n=4k+1,k∈N时,Sn=8k+a=2(n﹣1)+a=2n+a﹣2;
    当n=4k+2,k∈N时,Sn=2(n﹣2)+a+(﹣a+4)=2n;
    当n=4k+3,k∈N时,Sn=2(n﹣3)+a+(﹣a+4)+(﹣a+1)=2n﹣a+3;
    当n=4(k+1),k∈N时,Sn=2n.
    所以(k∈N).
    所以Sn或者是偶数,或者不是整数,即不存在正整数n,使得Sn=2019.
    ③当a=1时,a1=1,a2=3,a3=1,a4=3,a5=1,……,
    (k∈N),不存在正整数n,使得Sn=2019.
    综述所述,不存在实数a正整数n,使得Sn=2019.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
    日期:2019/12/27 12:29:23;用户:13029402512;邮箱:13029402512;学号:24164265
    相关试卷

    2022-2023学年北京市西城区高二(上)期末数学试卷(含答案解析): 这是一份2022-2023学年北京市西城区高二(上)期末数学试卷(含答案解析),共15页。试卷主要包含了 设点A,N,直线l等内容,欢迎下载使用。

    2021-2022学年北京市西城区高三(上)期末数学试卷(含答案解析): 这是一份2021-2022学年北京市西城区高三(上)期末数学试卷(含答案解析),共17页。

    2020-2021学年北京市西城区高二(下)期末数学试卷: 这是一份2020-2021学年北京市西城区高二(下)期末数学试卷,共17页。试卷主要包含了解答题共6小题,共85分等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map