苏科版数学九年级上册期中复习试卷03(含答案)
展开
这是一份苏科版数学九年级上册期中复习试卷03(含答案),共9页。试卷主要包含了抛物线y=2等内容,欢迎下载使用。
苏科版数学九年级上册期中复习试卷一.选择题1.将方程x2+8x+9=0左边变成完全平方式后,方程是( )A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+4)2=﹣72.若关于x的方程有实数根,则k的取值范围为( )A.k≥0 B.k>0 C.k≥ D.k>3.抛物线y=2(x+3)2+1的顶点坐标是( )A.(3,1) B.(3,﹣1) C.(﹣3,1) D.(﹣3,﹣1)4.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为( )A.50° B.80° C.100° D.130°5.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是( )A.4.75 B.4.8 C.5 D.4 6.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0; ③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有( ) A.1个 B.2个 C.3个 D.4个二.填空题7.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为 .8.在一元二次方程ax2+bx+c=0中,若a、b、c满足关系式a﹣b+c=0,则这个方程必有一个根为 . 9.已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为 cm2.10.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和为 .11.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为 . 12.若关于的二次函数与轴仅有一个公共点,则实数的值为 .13.如图,在⊙O的内接六边形ABCDEF中,∠A+∠C=220°,则∠E= °14.如图所示,菱形ABCD,∠B=120°,AD=1,扇形BEF的半径为1,圆心角为60°,则图中阴影部分的面积是 .15.两直角边是5和12的直角三角形中,其内心和外心之间的距离是_______.16.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m= .三.解答题17.(8分)解方程:(1)x2﹣4x+1=0. (2)2(x﹣3)=3x(x﹣3) 18.(8分)关于x的一元二次方程x2﹣x﹣(m+1)=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为符合条件的最小整数,求此方程的根. 19.(6分)图2是中国象棋棋盘的一部分,图中红方有两个马,黑方有三个卒子和一个炮,按照中国象棋中马的行走规则(马走日字,例如:按图1中的箭头方向走),红方的马现在走一步能吃到黑方棋子的概率是多少? 20.(8分)甲、乙两位同学5次数学成绩统计如表,他们的5次总成绩相同,小明根据他们的成绩绘制了尚不完整的统计图表,请同学们完成下列问题. 第1次第2次第3次第4次第5次甲成绩9040704060乙成绩705070a70甲、乙两人的数学成绩统计表(1)a= ,= ;(2)请完成图中表示乙成绩变化情况的折线;(3)S甲2=360,乙成绩的方差是 ,可看出 的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析, 将被选中. 21.(10分)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度. 22.(10分)已知二次函数y=x2+2x﹣1.(1)写出它的顶点坐标; (2)当x取何值时,y随x的增大而增大;(3)求出图象与x轴的交点坐标. 23.(10分)如图,已知直径与等边△ABC的高相等的圆O分别与边AB、BC相切于点D、E,边AC过圆心O与圆O相交于点F、G.(1)求证:DE∥AC;(2)若△ABC的边长为a,求△ECG的面积. 24.某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m= .(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有 个交点,所以对应的方程x2﹣2|x|=0有 个实数根;②方程x2﹣2|x|=2有 个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是 . 25.(10分)如图,等边△ABC内接于⊙O,P是上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP交PA的延长线于点M.(1)填空:∠APC= 度,∠BPC= 度;(2)求证:△ACM≌△BCP;(3)若PA=1,PB=2,求梯形PBCM的面积. 时间x(天)048121620销量y1(万朵)016242416026.(10分)某鲜花销售部在春节前20天内销售一批鲜花.其中,该销售部公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)关系为二次函数,部分对应值如表所示. 与此同时,该销售部还通过某网络电子商务平台销售鲜花,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天) 的函数关系如图所示.(1)求y1与x的二次函数关系式及自变量x的取值范围;(2)求y2与x的函数关系式及自变量x的取值范围;(3)当8≤x≤20时,设该花木公司鲜花日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时的最大值. 27.如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.
参考答案1-6.AACDBB7. ﹣1 ; 8. ﹣1 ;9. 3π; 10. 17或18或19; 11. 5 ;12. ﹣1; 13.140; 14.; 15.; 16. 2 .三.解答题(共11小题)17.(1)原方程的解是:x1=2+,x2=2﹣.(2)原方程的解是:x1=3或x2=.18.(1) (2) x1=0或x2=1.19. 解:红方马走一步可能的走法有14种,其中有3种情况吃到了黑方棋子,则红马现在走一步能吃到黑方棋子的概率是.20. (1)a= 40 ,= 60 ;(2)请完成图中表示乙成绩变化情况的折线;(3)S甲2=360,乙成绩的方差是 160 ,可看出 乙 的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析, 乙 将被选中. 21. (1) 略 (2)BC=60.22. (1)y=x2+2x﹣1=(x+1)2﹣2,∴顶点坐标为:(﹣1,﹣2); (2)∵y=x2+2x﹣1=(x+1)2﹣2的对称轴为:x=﹣1,开口向上,∴当x>﹣1时,y随x的增大而增大;(3)令y=x2+2x﹣1=0,解得:x=﹣1﹣或x=﹣1+,∴图象与x轴的交点坐标为(﹣1﹣,0),(﹣1+,0). 23.(1)略 ; (2) 24. (1)m=0,(2)略(3)由函数图象知:①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(答案不唯一)(4) 3,3,2,﹣1<a<0.25. (1)填空:∠APC= 60 度,∠BPC= 60 度;(2)求证:△ACM≌△BCP;(略)(3)S梯形PBCM =26. (1)y1与x的函数关系式为y1=﹣x2+5x(0≤x≤20);(2)y2与x的函数关系式是y2=; (3)由题意可得,当8≤x≤20时,y=﹣x2+5x+x﹣4=,∴x=12时,y取得最大值,此时y=32,即当8≤x≤20时,第12天日销售总量y最大,此时的最大值是32万朵. 27.(1)A(﹣1,0),B(4,0).(2)A'(1,4);(3)P的坐标为(,)或(,2+).
相关试卷
这是一份苏科版数学九年级上册月考模拟试卷03(含答案),共7页。试卷主要包含了根据下列表格的对应值,将连续正整数按如下规律排列,下列命题等内容,欢迎下载使用。
这是一份苏科版数学九年级上册月考复习试卷03(含答案),共12页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份苏科版数学九年级上册期末模拟试卷03(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。