中考数学二轮复习难题突破:与切线有关的证明与计算(解析版)
展开
这是一份中考数学二轮复习难题突破:与切线有关的证明与计算(解析版),共5页。
与切线有关的证明与计算 例1、如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【分析】:(1)连接AD,证AD⊥BC可得;(2)连接OD,利用中位线定理得到OD与AC平行,可证∠ODE为直角,由OD为半径,可证DE与圆O相切;(3)连接BF,先证三角形ABC为等边三角形,再求出BF的长,由DE为三角形CBF中位线,即可求出DE的长.【答案】:(1)连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径(2)DE与圆O相切,证明:连接OD,∵O,D分别为AB,BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切(3)∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC的中点,∴E为CF的中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得BF==3,则DE=BF=例2、如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD,BA分别相交于点F,G,若BG·BA=48,FG=,DF=2BF,求AH的值.【分析】:(1)证∠EBD=90°即可;(2)由△ABC∽△CBG得=,可求出BC,再由△BFC∽△BCD得BC2=BF·BD,可求出BF,再求出CF,CG,GB,通过计算发现CG=AG,可证CH=CB,即可求出AC.【答案】:(1)连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线(2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,又∵∠CBG=∠ABC,∴△ABC∽△CBG,∴=,即BC2=BG·BA=48,∴BC=4,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF·BD,∵DF=2BF,∴BF=4,在Rt△BCF中,CF==4,∴CG=CF+FG=5,在Rt△BFG中,BG==3,∵BG·BA=48,∴BA=8,∴AG=5,∴CG=AG,∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°,∴∠CHF=∠CBF,∴CH=CB=4,∵△ABC∽△CBG,∴=,∴AC==,∴AH=AC-CH=例3、如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.【答案】:(1)∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°(2)连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=∠OCF=90°,∴DF是⊙O的切线(3)∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴=,∴DC2=AD·DE.设DE=x,则AC=2x,AC2-AD2=DC2=AD·DE,即(2x)2-AD2=AD·x,整理得AD2+AD·x-20x2=0,解得AD=4x或AD=-5x(舍去),则DC==2x,故tan∠ABD=tan∠ACD===2 例4、如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD,AC分别交于点E,F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.【答案】:(1)直线CE与⊙O相切. 理由如下:∵四边形ABCD是矩形,∴BC∥AD,∴∠ACB=∠DAC,又∵∠ACB=∠DCE,∴∠DAC=∠DCE,连接OE,有OA=OE,则∠DAC=∠AEO=∠DCE.∵∠DCE+∠DEC=90°,∴∠AEO+∠DEC=90°,∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切 (2)∵tan∠ACB==,BC=2,∴AB=BC·tan∠ACB=,∴AC=.又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC·tan∠DCE=1.在Rt△CDE中,CE==,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即(-r)2=r2+3,解得r= 例5、如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.【答案】:(1)∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC为⊙O的切线,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD(2)∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD∶CA=CE∶CD,∴CD2=CA·CE,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2,设⊙O的半径为x,则OA=OD=x,在Rt△AOC中,OA2+AC2=OC2,∴x2+42=(2+x)2,解得x=,∴⊙O的半径为 例6、如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.【答案】:(1)连接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直径,∴∠ABD=90°,OA=OB,∴∠BAD=∠ABO,∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABO+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线(2)设圆的半径为R,连接CD,∵AD为⊙O的直径,∴∠ACD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四边形ACBD是圆内接四边形,∴∠BDE=∠ACB,∵∠DBE=∠CAB,∴△DBE∽△CAB,∴=,∴=,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴=,∴=,∵R>0,∴R=3,∴AB==,∵=,∴BE= 例7、如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG∶OC=3∶5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.【答案】:(1)连接AO,∵CD为⊙O的直径,AB⊥CD,AB=8,∴AG=4,∵OG∶OC=3∶5,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+42=(5k)2,解得k=1或k=-1(舍去),∴5k=5,即⊙O的半径是5(2)将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=15°,由对称性可知,∠DCM=30°,S阴影=S弓形CBM,连接OM,则∠MOD=60°,∴∠MOC=120°,过点M作MN⊥CD于点N,∴MN=MO·sin60°=5×=,∴S阴影=S扇形OMC-S△OMC=-×5×=-,即图中阴影部分的面积是- 例8、如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A,B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.【答案】:(1)连接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=AC,∠CBD=∠C=45°,∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,又∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,可证△AED≌△BFD(ASA),∴AE=BF(2)连接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根据勾股定理得EF2=EB2+BF2,∵EB=2,BF=1,∴EF==,∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF==,∵EF=,∴DE=×=,∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴=,即GE·ED=AE·EB,∴·GE=2,∴GE=,则GD=GE+ED=
相关试卷
这是一份题型五 圆的相关证明与计算 类型二 与切线有关的证明与计算(专题训练)-备战2024年中考数学二轮复习高分突破(全国通用),文件包含题型五圆的相关证明与计算类型二与切线有关的证明与计算专题训练原卷版docx、题型五圆的相关证明与计算类型二与切线有关的证明与计算专题训练解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份题型五 圆的相关证明与计算 类型二 与切线有关的证明与计算(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型五圆的相关证明与计算类型二与切线有关的证明与计算专题训练解析版docx、题型五圆的相关证明与计算类型二与切线有关的证明与计算专题训练原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型二 与圆切线有关的证明与计算(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型二与圆切线有关的证明与计算解析版docx、全国通用2022年中考数学命题点及重难题型分类突破练类型二与圆切线有关的证明与计算原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。