高中数学沪教版高中三年级 第一学期16.4组合教学设计
展开组合
【教学目标】
1.理解组合的意义,掌握组合数的计算公式;
2.能正确认识组合与排列的联系与区别 。
【教学重难点】
教学重点:组合的概念和组合数公式
教学难点:组合的概念和组合数公式
【授课类型】
新授课
【课时安排】
1课时
【教学准备】
多媒体、实物投影仪
【内容分析】
排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题。排列与组合的区别在于问题是否与顺序有关。与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要。排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系。
指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序。教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通。
能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别。
学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列。在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题。
排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述。也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程。据笔者观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法)。要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题。久而久之,学生的逻辑思维能力将会大大提高。
【教学过程】
一、复习引入:
1.分类计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有 种不同的方法
2.分步计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有 种不同的方法
3.排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列
4.排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示
5.排列数公式:()
6.阶乘:表示正整数1到的连乘积,叫做的阶乘规定。
7.排列数的另一个计算公式:=
8.提出问题:
示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?
示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?
引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合。
二、讲解新课
1.组合的概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合
说明:(1)不同元素;(2)“只取不排”——无序性;(3)相同组合:元素相同
2.组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从 个不同元素中取出个元素的组合数。用符号表示。
3.组合数公式的推导:
(1)从4个不同元素中取出3个元素的组合数是多少呢?
启发:由于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数可以求得,故我们可以考察一下和的关系,如下:
组 合 排列
由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有个;② 对每一个组合的3个不同元素进行全排列,各有种方法。由分步计数原理得:=,所以,。
(2)推广:一般地,求从n个不同元素中取出m个元素的排列数,可以分如下两步:① 先求从n个不同元素中取出m个元素的组合数;② 求每一个组合中m个元素全排列数,根据分步计数原理得:=。
(3)组合数的公式:
或
三、讲解范例:
例1.计算:(1); (2);
(1)解: =35;
(2)解法1:=120.
解法2:=120.
例2.求证:。
证明:∵
=
=
∴
例3.设 求的值
解:由题意可得: ,解得,
∵, ∴或或,
当时原式值为7;当时原式值为7;当时原式值为11.
∴所求值为4或7或11.
例4.(1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?
解:。
(2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?
解:问题可以分成2类:
第一类 2名男生和2名女生参加,有中选法;
第二类 3名男生和1名女生参加,有中选法
依据分类计数原理,共有100种选法
错解:种选法引导学生用直接法检验,可知重复的很多
例5.4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?
解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有,,,
所以,一共有++=100种方法。
解法二:(间接法)
四、课堂练习:
1.判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
2.名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( )
. . . .
3.如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( )
.对 .对 .对 .对
4.设全集,集合、是的子集,若有个元素,有个元素,且,求集合、,则本题的解的个数为 ( )
. . . .
5.从位候选人中选出人分别担任班长和团支部书记,有 种不同的选法
6.从位同学中选出人去参加座谈会,有 种不同的选法
7.圆上有10个点:
(1)过每2个点画一条弦,一共可画 条弦;
(2)过每3个点画一个圆内接三角形,一共可画 个圆内接三角形
8.(1)凸五边形有 条对角线;(2)凸五边形有 条对角线
9.计算:(1);(2)。
10.个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得分互不相同,则冠、亚军的可能情况共有多少种?
11.空间有10个点,其中任何4点不共面,(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?
12.壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值?
13.写出从这个元素中每次取出个的所有不同的组合
答案:1. (1)组合, (2)排列 2. B 3. A 4. D 5. 30 6. 15
7. (1)45 (2) 120 8. (1)5(2)
9. (1)455; (2) 10. (1)10; (2)20
11. (1); (2)
12.
13. ; ; ; ;
五、小结
组合的意义与组合数公式;解决实际问题时首先要看是否与顺序有关,从而确定是排列问题还是组合问题,必要时要利用分类和分步计数原理
【板书设计】
数学沪教版16.5二项式原理教案: 这是一份数学沪教版16.5二项式原理教案,共5页。教案主要包含了教学内容分析,融会贯通.,教学目标设计,教学用具准备,教学过程设计,教学设计说明等内容,欢迎下载使用。
2021学年第16章 排列组合和二项式定理综合与测试教学设计: 这是一份2021学年第16章 排列组合和二项式定理综合与测试教学设计,共5页。
高中数学沪教版高中三年级 第一学期第16章 排列组合和二项式定理综合与测试教学设计: 这是一份高中数学沪教版高中三年级 第一学期第16章 排列组合和二项式定理综合与测试教学设计,共7页。