高考数学一轮复习练习案18高考大题规范解答系列一_函数与导数含解析新人教版
展开
这是一份高考数学一轮复习练习案18高考大题规范解答系列一_函数与导数含解析新人教版,共5页。试卷主要包含了设函数f=eq \f,已知f=eq \fex,g=a,已知函数f=x3-kx+k2.等内容,欢迎下载使用。
(1)证明:当x>-eq \f(5π,4)时,f(x)≥0;
(2)若g(x)≥2+ax,求a.
[解析] (1)当x∈eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(5π,4),-\f(π,4)))时,
f(x)=ex-eq \r(2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)))≥ex>0;
当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,4),\f(3π,4)))时,f′(x)=ex-eq \r(2)cseq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)))为增函数且f′(0)=0,f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,4),0))减,在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(3π,4)))上增,因此f(x)≥f(0)=0,恒有f(x)≥0;
当x∈eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(3π,4),+∞))时,f′(x)=ex-eq \r(2)cseq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4))),
∵ex≥eeq \f(3π,4)>eq \r(2),∴f′(x)>0,∴f(x)在eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(3π,4),+∞))上为增函数,∴f(x)≥feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,4)π))=eeq \f(3π,4)-eq \r(2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)))>0;
综上所述:当x>-eq \f(5π,4)时,f(x)≥0成立.
(2)由已知得ex+sin x+cs x-2-ax≥0,
设h(x)=ex+sin x+cs x-2-ax且h(0)=0.
∵h(x)≥h(0),∴0是h(x)的一个最小值点,也是一个极小值点,
∴h′(0)=0,即e0+cs 0-sin 0-a=0,∴a=2.
2.(2020·黑龙江省哈尔滨师范大学附属中学高三上学期开学考试)设函数f(x)=eq \f(3x2+ax,ex)(a∈R).
(1)若f(x)在x=0处取得极值,求实数a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)在[3,+∞)上为减函数,求实数a的取值范围.
[解析] (1)对f(x)求导得
f′(x)=eq \f((6x+a)ex-(3x2+ax)ex,(ex)2)=eq \f(-3x2+(6-a)x+a,ex).
因为f(x)在x=0处取得极值,
所以f′(0)=0,即a=0.
当a=0时,f(x)=eq \f(3x2,ex),f′(x)=eq \f(-3x2+6x,ex),
由f′(x)>0,01,∴2ax+1>0,ax-1>0,∴f′(x)0,∴x=-eq \f(1,2)舍去.
当01时,f′(x)x1>1,令h(x)=ex-ax+a,则h(x)在(1,+∞)上有两个零点,令h′(x)=ex-a=0,则x=ln a.
当1≥ln a,即00,∴2a-aln a0时,令f′(x)=0,得x=±eq \f(\r(3k),3).当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,-\f(\r(3k),3)))时,f′(x)>0;当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(3k),3),\f(\r(3k),3)))时,f′(x)0.故f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,-\f(\r(3k),3))),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3k),3),+∞))单调递增,在eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(3k),3),\f(\r(3k),3)))单调递减.
(2)由(1)知,当k≤0时,f(x)在(-∞,+∞)单调递增,f(x)不可能有三个零点.
当k>0时,x=-eq \f(\r(3k),3)为f(x)的极大值点,x=eq \f(\r(3k),3)为f(x)的极小值点.此时,-k-1
相关试卷
这是一份高考数学二轮复习高考大题规范解答系列一_函数与导数含解析,共7页。试卷主要包含了4分eq \x,8分eq \x等内容,欢迎下载使用。
这是一份2022版高考人教版数学一轮练习:练案【19理】【18文】 高考大题规范解答系列(一)——函数与导数,共6页。试卷主要包含了设函数f=eq \f,已知f=eq \fex,g=a,已知函数f=x3-kx+k2.等内容,欢迎下载使用。
这是一份2022版新高考数学人教版一轮练习:(18) 高考大题规范解答系列(一)——函数与导数,共5页。试卷主要包含了设函数f=eq \f,已知f=eq \fex,g=a,已知函数f=x3-kx+k2.等内容,欢迎下载使用。