决胜中考数学压轴题全揭秘精品 专题07 二次函数的图象性质与应用问题(学生版)
展开这是一份决胜中考数学压轴题全揭秘精品 专题07 二次函数的图象性质与应用问题(学生版),共10页。
【考点1】二次函数的图象与性质
【例1】(2020·内蒙古呼和浩特·中考真题)关于二次函数,下列说法错误的是( )
A.若将图象向上平移10个单位,再向左平移2个单位后过点,则
B.当时,y有最小值
C.对应的函数值比最小值大7
D.当时,图象与x轴有两个不同的交点
【变式1-1】(2020·辽宁大连·中考真题)抛物线与x轴的一个交点坐标为,对称轴是直线,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是( )
A.B.C.D.
【变式1-2】(2020·四川眉山·中考真题)已知二次函数(为常数)的图象与轴有交点,且当时,随的增大而增大,则的取值范围是( )
A.B.C.D.
【考点2】抛物线的平移与解析式的确定
【例2-1】(2020·黑龙江哈尔滨·中考真题)将抛物线向上平移3个单位长度,再向右平移5个单位长度,所得的抛物线为( )
A.B.C.D.
【例2-2】(2020·湖北省直辖县级单位·中考真题)把抛物线先向右平移4个单位长度,再向下平移5个单位长度得到抛物线.
(1)直接写出抛物线的函数关系式;
(2)动点能否在拋物线上?请说明理由;
(3)若点都在抛物线上,且,比较的大小,并说明理由.
【变式2-1】(2020·陕西中考真题)在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( )
A.第一象限B.第二象限C.第三象限D.第四象限
【变式2-2】(2019·江苏中考真题)已知二次函数的图象经过点,顶点为将该图象向右平移,当它再次经过点时,所得抛物线的函数表达式为__.
【变式2-3】(2019·浙江中考真题)在平面直角坐标系中,抛物线经过变换后得到抛物线,则这个变换可以是( )
A.向左平移2个单位B.向右平移2个单位
C.向左平移8个单位D.向右平移8个单位
【变式2-4】(2020·安徽中考真题)在平而直角坐标系中,已知点,直线经过点.抛物线恰好经过三点中的两点.
判断点是否在直线上.并说明理由;
求的值;
平移抛物线,使其顶点仍在直线上,求平移后所得抛物线与轴交点纵坐标的最大值.
【考点3】二次函数的图象与字母系数的关系
【例3】(2020·四川凉山·中考真题)二次函数的图象如图所示,有如下结论:①;②;③;④(m为实数).其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
【变式3-1】(2020·黑龙江齐齐哈尔·中考真题)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:
①ac<0;
②4a﹣2b+c>0;
③当x>2时,y随x的增大而增大;
④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.
其中正确的结论有( )
A.1个B.2个C.3个D.4个
【变式3-2】(2020·湖北黄石·中考真题)若二次函数的图象,过不同的六点、、、、、,则、、的大小关系是( )
A.B.C.D.
【考点4】二次函数的应用
【例4】(2020·辽宁铁岭·中考真题)小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量(本)与销售单价(元)之间满足一次函数关系,三对对应值如下表:
(1)求与之间的函数关系式;
(2)通过与其他网店对比,小红将这款笔记本的单价定为元(,且为整数),设每周销售该款笔记本所获利润为元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?
【变式4-1】(2020·山东日照·中考真题)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).
(1)若四块矩形花圃的面积相等,求证:AE=3BE;
(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.
【变式4-3】(2020·辽宁营口·中考真题)某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).
(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?
【变式4-3】(2020·辽宁盘锦·)某服装厂生产品种服装,每件成本为71元,零售商到此服装厂一次性批发品牌服装件时,批发单价为元,与之间满足如图所示的函数关系,其中批发件数为10的正整数倍.
(1)当时,与的函数关系式为__________.
(2)某零售商到此服装厂一次性批发品牌服装200件,需要支付多少元?
(3)零售商到此服装厂一次性批发品牌服装件,服装厂的利润为元,问:为何值时,最大?最大值是多少?
1.(2020·浙江衢州·中考真题)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是( )
A.向左平移2个单位,向下平移2个单位
B.向左平移1个单位,向上平移2个单位
C.向右平移1个单位,向下平移1个单位
D.向右平移2个单位,向上平移1个单位
2.(2020·四川宜宾·中考真题)函数的图象与x轴交于点(2,0),顶点坐标为(-1,n),其中,以下结论正确的是( )
①;
②函数在处的函数值相等;
③函数的图象与的函数图象总有两个不同的交点;
④函数在内既有最大值又有最小值.
A.①③B.①②③C.①④D.②③④
3.(2020·湖南长沙·中考真题)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:(a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )
A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟
4.(2020·云南昆明·中考真题)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是( )
A.ab<0
B.一元二次方程ax2+bx+c=0的正实数根在2和3之间
C.a=
D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2
5.(2020·辽宁抚顺·中考真题)如图,在中,,,于点.点从点出发,沿的路径运动,运动到点停止,过点作于点,作于点.设点运动的路程为,四边形的面积为,则能反映与之间函数关系的图象是( )
A. B. C. D.
6.(2020·四川绵阳·中考真题)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )
A.4米B.5米C.2米D.7米
7.(2020·山西中考真题)竖直上抛物体离地面的高度与运动时间之间的关系可以近似地用公式表示,其中是物体抛出时离地面的高度,是物体抛出时的速度.某人将一个小球从距地面的高处以的速度竖直向上抛出,小球达到的离地面的最大高度为( )
A.B.C.D.
8.(2020·湖南中考真题)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是( )
A.4B.3C.2D.1
9.(2020·山东菏泽·中考真题)一次函数与二次函数在同一平面直角坐标系中的图象可能是( )
A.B.
C.D.
10.(2020·四川中考真题)若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是_____.
11.(2020·山东淄博·中考真题)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是_____个.
12.(2020·贵州黔东南·中考真题)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是_____.
13.(2020·西藏中考真题)当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m=_____.
14.(2020·江苏南京·中考真题)下列关于二次函数(为常数)的结论,①该函数的图象与函数的图象形状相同;②该函数的图象一定经过点;③当时,y随x的增大而减小;④该函数的图象的顶点在函数的图像上,其中所有正确的结论序号是__________.
15.(2020·湖北荆门·中考真题)如图,抛物线与x轴交于点A、B,顶点为C,对称轴为直线,给出下列结论:①;②若点C的坐标为,则的面积可以等于2;③是抛物线上两点,若,则;④若抛物线经过点,则方程的两根为,3其中正确结论的序号为_______.
16.(2020·湖北随州·中考真题)2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格(元/只)和销量(只)与第天的关系如下表:
物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量(只)与第天的关系为(,且为整数),已知该型号口罩的进货价格为0.5元/只.
(1)直接写出该药店该月前5天的销售价格与和销量与之间的函数关系式;
(2)求该药店该月销售该型号口罩获得的利润(元)与的函数关系式,并判断第几天的利润最大;
(3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以倍的罚款,若罚款金额不低于2000元,则的取值范围为______.
17.(2020·辽宁朝阳·中考真题)某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:
(1)直接写出y与x的关系式_________________;(2)求公司销售该商品获得的最大日利润;
(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.
18.(2020·贵州贵阳·中考真题)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数(人)与时间(分钟)的变化情况,数据如下表:(表中9-15表示)
(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出与之间的函数关系式;
(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?
(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?
19.(2020·内蒙古呼伦贝尔·中考真题)某商店销售一种销售成本为每件40元的玩具,若按每件50元销售,一个月可售出500件,销售价每涨1元,月销量就减少10件.设销售价为每件元,月销量为件,月销售利润为元.
(1)写出与的函数解析式和与的函数解析式;
(2)商店要在月销售成本不超过10000的情况下,使月销售利润达到8000元,销售价应定为每件多少元;
(3)当销售价定为每件多少元时会获得最大利润?求出最大利润.
20.(2020·山东临沂·中考真题)已知抛物线.
(1)求这条抛物线的对称轴;
(2)若该抛物线的顶点在x轴上,求其解析式;
(3)设点,在抛物线上,若,求m的取值范围.销售单价(元)
12
14
16
每周的销售量(本)
500
400
300
第天
1
2
3
4
5
销售价格(元/只)
2
3
4
5
6
销量(只)
70
75
80
85
90
销售单价x(元)
40
60
80
日销售量y(件)
80
60
40
时间(分钟)
0
1
2
3
4
5
6
7
8
9
9~15
人数(人)
0
170
320
450
560
650
720
770
800
810
810
相关试卷
这是一份决胜中考数学压轴题全揭秘精品 专题01 数与式问题(学生版),共9页。
这是一份专题14 最值问题-决胜2021中考数学压轴题全揭秘精品(学生版),共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份专题02 方程(组)问题-决胜2021中考数学压轴题全揭秘精品(学生版),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。