专题15 规律性问题-决胜2021中考数学压轴题全揭秘精品(学生版)
展开
这是一份专题15 规律性问题-决胜2021中考数学压轴题全揭秘精品(学生版),共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
《中考压轴题全揭秘》
专题15 规律性问题
一、单选题
1.将全体正奇数排成一个三角形数阵
1
3 5
7 9 11
13 15 17 19
21 23 25 27 29
… … … … … …
根据以上排列规律,数阵中第25行的第20个数是( )
A.639
B.637
C.635
D.633
2.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第 100 个数是( )
A.9999 B.10000 C.10001 D.10002
3.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为( )
A.11 B.13 C.15 D.17
4.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为( )
A.(1,1) B.(0,) C.() D.(﹣1,1)
5.如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、An(n,0),作垂直于x轴的直线交l于点B1、B2、…、Bn,将△OA1B1,四边形A1A2B2B1、…、四边形An−1AnBnBn−1的面积依次记为S1、S2、…、Sn,则Sn=()
A.n2 B.2n+1
C.2n D.2n−1
6.计算+++++……+的值为( )
A. B. C. D.
7.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )
A. B. C. D.
8.如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为( )
A.28 B.29 C.30 D.31
9.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为( )
A.a=1,b=6,c=15 B.a=6,b=15,c=20
C.a=15,b=20,c=15 D.a=20,b=15,c=6
10.观察下列算式: , , , ,
, , , …,
则…的未位数字是( )
A.8 B.6 C.4 D.0
11.按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是( )
A.an B.﹣an C.(﹣1)n+1an D.(﹣1)nan
12.我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为( )
A.33 B.301 C.386 D.571
13.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是( )
A.504m2 B.m2 C.m2 D.1009m2
14.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )
A.2 B. C.5 D.
15.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:
若n=13,则第2018次“F”运算的结果是( )
A.1 B.4 C.2018 D.42018
16.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为( )
A.()n﹣1 B.2n﹣1 C.()n D.2n
二、填空题
17.观察下列一组由★排列的“星阵”,按图中规律,第n个“星阵”中的★的个数是__.
18.观察下列运算过程:S=1+3+32+33+…+32017+32018 ①,
①×3得3S=3+32+33+…+32018+32019 ②,
②﹣①得2S=32019﹣1,S=.
运用上面计算方法计算:1+5+52+53+…+52018=____.
19.如图,下列图案是由火柴棒按某种规律搭成的,第个图案中有2个正方形,第个图案中有5个正方形,第个图案中有8个正方形,则第个图案中有______个正方形,第n个图案中有______个正方形.
20.在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,,依此规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为__.
21.观察下列运算过程:
……
请运用上面的运算方法计算:
=_____.
22.如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点A1作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;……,按此规律进行下去,点A2020的坐标是_____________.
23.如图,点的坐标为,过点作不轴的垂线交直于点以原点为圆心,的长为半径断弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点;…按此作法进行下去,则的长是____________.
24.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.
25.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么有一张A4的纸可以裁_______张A8的纸.
26.如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为__.
27.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第个格子的数为_____.
28.如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是_____.
29.每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为_____.
30.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形AnBnCnDn的面积是_____.
31.将从1开始的连续自然数按以下规律排列:
第1行
1
第2行
2
3
4
第3行
9
8
7
6
5
第4行[来源:]
10
11
12
13
14
15
16
第5行
25
24
23
22
21
20
19
18
17
…
则2018在第_____行.
32.如图,直线与两坐标轴分别交于、两点,将线段分成等份,分点分别为,,P3,
,… ,过每个分点作轴的垂线分别交直线于点,,,… ,用,,,…,分别表示,,…,的面积,则___________.
33.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,依次进行下去,则点的横坐标为__.
34.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为_____.(结果不取近似值)
35.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是_____.
36.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.
37.如图,射线OM在第一象限,且与x轴正半轴的夹角为60°,过点D(6,0)作DA⊥OM于点A,作线段 OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB.以AB为边在△AOB的外侧作正方形ABCA1,延长A1C交射线OB于点B1,以A1B1为边在△A1OB1的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在△A2OB2的外侧作正方形A2B2C2A3……按此规律进行下去,则正方形A2017B2017C2017A2018的周长为______________.
38.如图,已知等边△,顶点在双曲线上,点的坐标为.过作交双曲线于点,过作交轴于点,得到第二个等边△;过作交双曲线于点,过作交轴于点,得到第三个等边△;以此类推,,则点的坐标为__.
39.如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第个等边三角形的边长等于__________.
40.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△AnBn+1Cn的面积为__.(用含正整数n的代数式表示)
41.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则Sn=_____.
42.如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O2018的坐标为_____.
三、解答题
43.问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.
问题探究:
我们先从简单的问题开始探究,从中找出解决问题的方法.
探究一
用若干木棒来搭建横长是m,纵长是n的矩形框架(m、n是正整数),需要木棒的条数.
如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;
如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;
如图③,当m=2,n=2时,横放木棒为2×(2+1))条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;
如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.
问题(一):当m=4,n=2时,共需木棒多少条.
问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为多少条,
纵放的木棒为多少条.
探究二
用若干木棒来搭建横长是m,纵长是n,高是s的长方体框架(m、n、s是正整数),需要木棒的条数.
如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;
如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;
如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.
问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为多少条,竖放木棒条数为多少条.
实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是多少.
拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒多少条.
[来源:Z.X.X.K]
44.空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向,这样的坐标系称为空间直角坐标系.
将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.
若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.
(1)如图是由若干个单位长方体码放的一个几何体的三视图,写出这种码放方式的有序数组,组成这个几何体的单位长方体的个数为多少个;
(2)对有序数组性质的理解,下列说法正确的是哪些;(只写序号)
①每一个有序数组(x,y,z)表示一种几何体的码放方式.
②有序数组中x、y、z的乘积就表示几何体中单位长方体的个数.
③有序数组不同,所表示几何体的单位长方体个数不同.
④不同的有序数组所表示的几何体的体积不同.
⑤有序数组中x、y、z每两个乘积的2倍可分别确定几何体表面上S1、S2、S3的个数.
(3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:
几何体
有序数组
单位长方体的个数
表面上面积为的个数
表面上面积为的个数
表面上面积为的个数
表面积
(1,1,1)
1
2
2
2
2S1+2S2+2S3
(1,2,1)
2
4
2
4
4S1+2S2+4S3
(3,1,1)
3
2
6
6
2S1+6S2+6S3
(2,1,2)
4
4
8
4
4S1+8S2+4S3
(1,5,1)
5
10
2
10
10S1+2S2+10S3
(1,2,3)
6
12
6
4
12S1+6S2+4S3
(1,1,7)
7
14
14
2
14S1+14S2+2S3
(2,2,2)
8
8
8
8
8S1+8S2+8S3
…
…
…
…
…
…[来源:]
根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z);(用x、y、z、S1、S2、S3表示)
(4)当S1=2,S2=3,S3=4时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,对12个单位长方体码放的几何体表面积最小的规律进行探究,根据探究的结果请写出使几何体表面积最小的有序数组,并用几何体表面积公式求出这个最小面积.(缝隙不计)
45.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.
尝试 (1)求前4个台阶上数的和是多少?
(2)求第5个台阶上的数x是多少?
应用 求从下到上前31个台阶上数的和.
发现 试用含k(k为正整数)的式子表示出数“1”所在的台阶数.
46.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是 、 .
请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:
(1)第5个点阵中有 个圆圈;第n个点阵中有 个圆圈.
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
47.观察以下等式:
第1个等式:,
第2个等式:,
第3个等式:,
第4个等式:,
第5个等式:,
……
按照以上规律,解决下列问题:
(1)写出第6个等式: ;
(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.
相关试卷
这是一份专题15 规律性问题-决胜2022中考数学压轴题全揭秘精品(原卷版),共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份专题15 规律性问题-决胜2022中考数学压轴题全揭秘精品(解析版),共41页。试卷主要包含了将全体正奇数排成一个三角形数阵,按一定规律排列的一列数依次为,如图,已知直线l,计算+++++……+的值为等内容,欢迎下载使用。
这是一份决胜中考数学压轴题全揭秘精品 专题01 数与式问题(学生版),共9页。