所属成套资源:2021年全国中考数学真题汇编(含解析)
2021全国中考数学真题分类汇编--三角形——相似三角形
展开
这是一份2021全国中考数学真题分类汇编--三角形——相似三角形,共43页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2021全国中考真题分类汇编(三角形)
----相似三角形
一、选择题
1. (2021•河北省)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=( )
A.1cm B.2cm C.3cm D.4cm
2. (2021•遂宁市)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积是3cm2,则四边形BDEC的面积为( )
A. 12cm2 B. 9cm2 C. 6cm2 D. 3cm2
3. (2021•浙江省绍兴市)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是( )
A.2m B.3m C.m D.m
4. (2021•湖北省恩施州)如图,在4×4的正方形网格中,每个小正方形的边长都为1,E为BD与正方形网格线的交点,下列结论正确的是( )
A.CE≠BD B.△ABC≌△CBD C.AC=CD D.∠ABC=∠CBD
5. (2021•浙江省温州市)如图,图形甲与图形乙是位似图形,O是位似中心,点A,B的对应点分别为点A′,则A′B′的长为( )
A.8 B.9 C.10 D.15
6. (2021•重庆市A)如图,△ABC与△BEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是( )
A. 1:2 B. 1:4 C. 1:3 D. 1:9
7. (2021•重庆市B)如图,在平面直角坐标系中,将△OAB以原点O为位似中心放大后得到△OCD,若B(0,1),D(0,3),则△OAB与△OCD的相似比是( )
A.2:1 B.1:2 C.3:1 D.1:3
8. (2021•江苏省连云港)如图,中,,、相交于点D,,,,则的面积是( )
A. B. C. D.
9. (2021•黑龙江省龙东地区)如图,平行四边形的对角线、相交于点E,点O为的中点,连接并延长,交的延长线于点D,交于点G,连接、,若平行四边形的面积为48,则的面积为( )
A. 5.5 B. 5 C. 4 D. 3
二.填空题
1. (2021•湖南省邵阳市)如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=,AD=4,则AB的长为 .
2. (2021•江苏省南京市)如图,将绕点A逆时针旋转到的位置,使点落在上,与交于点E,若,则的长为________.
3. (2021•宿迁市)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD=2BD,CF=2AF,BE交AD于点F,则△AFE面积的最大值是_________.
4. (2021•江苏省扬州) 如图,在中,,矩形的顶点D、E在上,点F、G分别在、上,若,,且,则的长为________.
5. (2021•浙江省嘉兴市)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是 .
6. (2021•黑龙江省大庆市)已知,则 = ;
7. (2021•云南省)如图,在△ABC中,点D,E分别是BC,AC的中点,AD与BE相交于点F.若BF=6,则BE的长是 .
8. (2021•吉林省)如图,为了测量山坡的护坡石坝高,把一根长为4.5m的竹竿AC斜靠在石坝旁,量出竿上AD长为1m时,它离地面的高度DE为0.6m,则坝高CF为 m.
9. (2021•内蒙古包头市)如图,在中,,过点B作,垂足为B,且,连接CD,与AB相交于点M,过点M作,垂足为N.若,则MN的长为__________.
10.(2021•江苏省连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3EF,则=______.
11.(2021•上海市)如图,已知,则_________.
12.(2021•山东省菏泽市)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM与四边形BCME的面积比为 .
13. (2021•四川省南充市)如图,在△ABC中,D为BC上一点,BC=AB=3BD,则AD:AC的值为 .
14. 2021•浙江省湖州市)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是 .
三、解答题
1. (2021•湖北省黄冈市)如图,在△ABC和△DEC中,∠A=∠D
(1)求证:△ABC∽△DEC;
(2)若S△ABC:S△DEC=4:9,BC=6,求EC的长.
2. (2021•湖南省常德市)如图,在中,,N是边上的一点,D为的中点,过点A作的平行线交的延长线于T,且,连接.
(1)求证:;
(2)在如图中上取一点O,使,作N关于边的对称点M,连接、、、、得如图.
①求证:;
②设与相交于点P,求证:.
3. (2021•湖北省荆州市)在矩形ABCD中,AB=2,AD=4,F是对角线AC上不与点A,C重合的一点,过F作FE⊥AD于E,将△AEF沿EF翻折得到△GEF,点G在射线AD上,连接CG.
(1)如图1,若点A的对称点G落在AD上,∠FGC=90°,延长GF交AB于H,连接CH.
①求证:△CDG∽△GAH;
②求tan∠GHC.
(2)如图2,若点A的对称点G落在AD延长线上,∠GCF=90°,判断△GCF与△AEF是否全等,并说明理由.
4. (2021•广西玉林市)如图,在中,在上,,.
(1)求证:∽;
(2)若,求的值.
5. (2021•山西省中考)阅读与思考,请阅读下列科普材料,并完成相应的任务.
图算法
图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:得出,当时,.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.
再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?
我们可以利用公式求得的值,也可以设计一种图算法直接得出结果:我们先来画出一个的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.
图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.
任务:
(1)请根据以上材料简要说明图算法的优越性;
(2)请用以下两种方法验证第二个例子中图算法的正确性:
①用公式计算:当,时,的值为多少;
②如图,在中,,是的角平分线,,,用你所学的几何知识求线段的长.
6.(2021•广东省)如题图,边长为的正方形中,点为的中点.连接,将沿 折叠得到,交于点,求的长.
7. (2021•江苏省南京市)如图,AC与BD交于点O,OA=OD, ∠ABO=∠DCO,E为BC延长线上一点,过点E作EF∥CD,交BD的延长线于点F.
(1)求证;
(2)若,求的长.
8. (2021•绥化市)如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点,为平面直角坐标系的原点,矩形的4个顶点均在格点上,连接对角线.
(1)在平面直角坐标系内,以原点为位似中心,把缩小,作出它的位似图形,并且使所作的位似图形与的相似比等于;
(2)将以为旋转中心,逆时针旋转,得到,作出,并求出线段旋转过程中所形成扇形的周长.
答案
一、选择题
1. (2021•河北省)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=( )
A.1cm B.2cm C.3cm D.4cm
【分析】高脚杯前后的两个三角形相似.根据相似三角形的判定和性质即可得出结果.
【解答】解:如图:过O作OM⊥CD,垂足为M,过O作ON⊥AB,垂足为N,
∵CD∥AB,
∴△CDO∽ABO,即相似比为,
∴=,
∵OM=15﹣7=8,ON=11﹣7=4,
∴=,
=,∴
AB=3,
故选:C.
2. (2021•遂宁市)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积是3cm2,则四边形BDEC的面积为( )
A. 12cm2 B. 9cm2 C. 6cm2 D. 3cm2
【答案】B
【解析】
【分析】由三角形的中位线定理可得DE=BC,DE∥BC,可证△ADE∽△ABC,利用相似三角形的性质,即可求解.
【详解】解:∵点D,E分别是边AB,AC的中点,
∴DE=BC,DE∥BC,
∴△ADE∽△ABC,
∴,
∵S△ADE=3,
∴S△ABC=12,
∴四边形BDEC的面积=12-3=9(cm2),
故选:B.
3. (2021•浙江省绍兴市)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是( )
A.2m B.3m C.m D.m
【分析】利用相似三角形的性质求解即可.
【解答】解:∵AB∥OP,
∴△CAB∽△CPO,
∴,
∴,
∴OP=4(m),
故选:A.
4. (2021•湖北省恩施州)如图,在4×4的正方形网格中,每个小正方形的边长都为1,E为BD与正方形网格线的交点,下列结论正确的是( )
A.CE≠BD B.△ABC≌△CBD C.AC=CD D.∠ABC=∠CBD
【分析】根据勾股定理可以得到BC、CD、BD的长,再根据勾股定理的逆定理可以得到△BCD的形状,利用相似三角形的判定与性质,可以得到EF的长,然后即可得到CE的长,从而可以得到CE和BD的关系;根据图形,很容易判断△ABC≌△CBD和AC=CD不成立;再根据锐角三角函数可以得到∠ABC和∠CBD的关系.
【解答】解:由图可得,
BC==2,CD==,BD==5,
∴BC2+CD2=(2)2+()2=25=BD2,
∴△BCD是直角三角形,
∵EF∥GD,
∴△BFE∽△BGD,
∴,
即,
解得EF=1.5,
∴CE=CF﹣EF=4﹣1.5=2.5,
∴=,故选项A错误;
由图可知,显然△ABC和△CBD不全等,故选项B错误;
∵AC=2,CD=,
∴AC≠CD,故选项C错误;
∵tan∠ABC==,tan∠==,
∴∠ABC=∠CBD,故选项D正确;
故选:D.
5. (2021•浙江省温州市)如图,图形甲与图形乙是位似图形,O是位似中心,点A,B的对应点分别为点A′,则A′B′的长为( )
A.8 B.9 C.10 D.15
【分析】根据位似图形的概念列出比例式,代入计算即可.
【解答】解:∵图形甲与图形乙是位似图形,位似比为2:3,
∴=,即=,
解得,A′B′=9,
故选:B.
6. (2021•重庆市A)如图,△ABC与△BEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是( )
A. 1:2 B. 1:4 C. 1:3 D. 1:9
【答案】A
【解析】
【分析】利用位似的性质得△ABC∽△DEF,OB:OE= 1:2,然后根据相似三角形的性质解决问题.
【详解】解:∵△ABC与△DEF位似,点O为位似中心.
∴△ABC∽△DEF,OB:OE= 1:2,
∴△ABC与△DEF的周长比是:1:2.
故选:A.
7. (2021•重庆市B)如图,在平面直角坐标系中,将△OAB以原点O为位似中心放大后得到△OCD,若B(0,1),D(0,3),则△OAB与△OCD的相似比是( )
A.2:1 B.1:2 C.3:1 D.1:3
【分析】根据信息,找到OB与OD的比值即可.
【解答】解:∵B(0,1),D(0,3).
∴OB=1,OD=3.
∵△OAB以原点O为位似中心放大后得到△OCD.
∴△OAB与△OCD的相似比是OB:OD=1:3.
故选:D.
8. (2021•江苏省连云港)如图,中,,、相交于点D,,,,则的面积是( )
A. B. C. D.
【答案】A
【解析】
【分析】过点C作的延长线于点,由等高三角形的面积性质得到,再证明,解得,分别求得AE、CE长,最后根据的面积公式解题.
【详解】解:过点C作的延长线于点,
与是等高三角形,
设
,
故选:A.
9. (2021•黑龙江省龙东地区)如图,平行四边形的对角线、相交于点E,点O为的中点,连接并延长,交的延长线于点D,交于点G,连接、,若平行四边形的面积为48,则的面积为( )
A. 5.5 B. 5 C. 4 D. 3
【答案】C
【解析】
【分析】由题意易得,进而可得,则有,然后根据相似比与面积比的关系可求解.
【详解】解:∵四边形是平行四边形,
∴,AE=EF,,
∵平行四边形的面积为48,
∴,
∵点为的中点,
∴,
∴,,
∴,,
∴,
∴,
∵和同高不同底,
∴,
故选C.
二.填空题
1. (2021•湖南省邵阳市)如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=,AD=4,则AB的长为 3 .
【分析】易证∠ACD=∠ADE,由矩形的性质得出∠BAC=∠ACD,则=,由此得到AC===5,最后由勾股定理得出结果.
【解答】解:∵DE⊥AC,
∴∠ADE+∠CAD=90°,
∵∠ACD+∠CAD=90°,
∴∠ACD=∠ADE,
∵矩形ABCD的对边AB∥CD,
∴∠BAC=∠ACD,
∵sin∠ADE=,
∴=,
∴AC===5,
由勾股定理得,AB===3,
故答案为:3.
2. (2021•江苏省南京市)如图,将绕点A逆时针旋转到的位置,使点落在上,与交于点E,若,则的长为________.
【答案】
【解析】
【分析】过点C作CM//交于点M,证明求得,根据AAS证明可求出CM=1,再由CM//证明△,由相似三角形的性质查得结论.
【详解】解:过点C作CM//交于点M,
∵平行四边形ABCD绕点A逆时针旋转得到平行四边形
∴,,
∴,
∴
∴
∵
∴
∴
∴∠
∵
∴
∵
∴∠
∵,
∴
∴∠
∴∠
在和中,
∴
∴
∵
∴△
∴
∴
∴
故答案为:.
3. (2021•宿迁市)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD=2BD,CF=2AF,BE交AD于点F,则△AFE面积的最大值是_________.
【答案】
【解析】
【分析】连接DF,先根据相似三角形判定与性质证明,得到,进而根据CD=2BD,CF=2AF,得到,根据△ABC中,AB=4,BC=5,得到当AB⊥BC时,△ABC面积最大,即可求出△AFE面积最大值.
【详解】解:如图,连接DF,
∵CD=2BD,CF=2AF,
∴,
∵∠C=∠C,
∴△CDF∽△CBA,
∴,∠CFD=∠CAB,
∴DF∥BA,
∴△DFE∽△ABE,
∴,
∴,
∵CF=2AF,
∴,
∴,
∵CD=2BD,
∴,
∴,
∵△ABC中,AB=4,BC=5,
∴,当AB⊥BC时,△ABC面积最大,为,
此时△AFE面积最大.
故答案为:
4. (2021•江苏省扬州) 如图,在中,,矩形的顶点D、E在上,点F、G分别在、上,若,,且,则的长为________.
【答案】
【解析】
【分析】根据矩形的性质得到GF∥AB,证明△CGF∽△CAB,可得,证明△ADG≌△BEF,得到AD=BE=,在△BEF中,利用勾股定理求出x值即可.
【详解】解:∵DE=2EF,设EF=x,则DE=2x,
∵四边形DEFG是矩形,
∴GF∥AB,
∴△CGF∽△CAB,
∴,即,
∴,
∴AD+BE=AB-DE==,
∵AC=BC,
∴∠A=∠B,又DG=EF,∠ADG=∠BEF=90°,
∴△ADG≌△BEF(AAS),
∴AD=BE==,
在△BEF中,,
即,
解得:x=或(舍),
∴EF=,
故答案为:.
5. (2021•浙江省嘉兴市)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是 (4,2) .
【分析】根据图示,对应点的连线都经过同一点,该点就是位似中心.
【解答】解:如图,
点G(4,2)即为所求的位似中心.
故答案是:(4,2).
6. (2021•黑龙江省大庆市)已知,则 = ;
7. (2021•云南省)如图,在△ABC中,点D,E分别是BC,AC的中点,AD与BE相交于点F.若BF=6,则BE的长是 .9
8. (2021•吉林省)如图,为了测量山坡的护坡石坝高,把一根长为4.5m的竹竿AC斜靠在石坝旁,量出竿上AD长为1m时,它离地面的高度DE为0.6m,则坝高CF为 m.
9. (2021•内蒙古包头市)如图,在中,,过点B作,垂足为B,且,连接CD,与AB相交于点M,过点M作,垂足为N.若,则MN的长为__________.
【答案】
10.(2021•江苏省连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3EF,则=______.
【答案】
【解析】
【分析】连接ED,由是的中线,得到,,由,得到,设,由面积的等量关系解得,最后根据等高三角形的性质解得,据此解题即可.
【详解】解:连接ED
是的中线,
,
设,
与是等高三角形,
,
故答案为:.
11.(2021•上海市)如图,已知,则_________.
【答案】
【解析】
【分析】先根据等高的两个三角形的面积比等于边长比,得出,再根据△AOD∽△COB得出,再根据等高的两个三角形的面积比等于边长比计算即可
【详解】解:作AE⊥BC,CF⊥BD
∵
∴△ABD和△BCD等高,高均为AE
∴
∵AD∥BC
∴△AOD∽△COB
∴
∵△BOC和△DOC等高,高均为CF
∴
∴
故答案为:
12.(2021•山东省菏泽市)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM与四边形BCME的面积比为 1:3 .
【分析】通过证明△AEM∽△ABC,可得,可求EF的长,由相似三角形的性质可得=()2=,即可求解.
【解答】解:∵四边形EFGH和四边形HGNM均为正方形,
∴EF=EH=HM,EM∥BC,
∴△AEM∽△ABC,
∴,
∴,
∴EF=,
∴EM=5,
∵△AEM∽△ABC,
∴=()2=,
∴S四边形BCME=S△ABC﹣S△AEM=3S△AEM,
∴△AEM与四边形BCME的面积比为1:3,
故答案为:1:3.
13. (2021•四川省南充市)如图,在△ABC中,D为BC上一点,BC=AB=3BD,则AD:AC的值为 .
【分析】根据两边成比例且夹角相等的两个三角形相似证明出△ABC∽△DBA,再根据相似三角形的对应边成比例,变形即可得出答案.
【解答】解:∵BC=AB=3BD,
∴,
∵∠B=∠B,
∴△ABC∽△DBA,
∴,
∴AD:AC=,
故答案为:.
14. 2021•浙江省湖州市)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是 .
【答案】﹣1
【解析】如图,CD=1,DG=,则求得CG=,根据△CDG∽△DEG,可求得DE=,∴AE=1﹣,∴AB=AE=﹣1.
三、解答题
1. (2021•湖北省黄冈市)如图,在△ABC和△DEC中,∠A=∠D
(1)求证:△ABC∽△DEC;
(2)若S△ABC:S△DEC=4:9,BC=6,求EC的长.
【分析】(1)由两角相等的两个三角形相似可判断△ABC∽△DEC;
(2)由相似三角形的性质可得=()2=,即可求解.
【解答】证明:(1)∵∠BCE=∠ACD.
∴∠BCE+∠ACE=∠ACD+∠ACE,
∴∠DCE=∠ACB,
又∵∠A=∠D,
∴△ABC∽△DEC;
(2)∵△ABC∽△DEC;
∴=()2=,
又∵BC=6,
∴CE=9.
2. (2021•湖南省常德市)如图,在中,,N是边上的一点,D为的中点,过点A作的平行线交的延长线于T,且,连接.
(1)求证:;
(2)在如图中上取一点O,使,作N关于边的对称点M,连接、、、、得如图.
①求证:;
②设与相交于点P,求证:.
【答案】(1)见解析;(2)①见解析,②见解析.
【解析】
【分析】(1)先用,且证明出四边形ATBN是平行四边形,得到△TAD≌△CND,用对应边相等与等量代换,从而得出结论.
(2)①连接AM、MN,利用矩形的性质与等腰三角形的性质,证明出△OCM是直角三角形,证明出Rt△OAT≌Rt△OCM,得到对应角相等,则得到答案;
②连接OP,由①中,得到∠OTM=∠OAP,点O、T、A、P共圆,由直径所对的圆周角为直角,证明出∠OPT=90︒,再根据等腰三角形的三线合一性得出结论.
【详解】证明:(1)∵,且
∴,且,
∴四边形ATBN是平行四边形,
∴,
∴∠DTA=∠DCN,
∵∠ADT=∠NDC,
∵点D为AN的中点,
∴AD=ND,
∴△TAD≌△CND(AAS)
∴TA=CN,
∵,
∴BN=CN,
(2)①如图所示,连接AM、MN,
∵点N关于边的对称点为M,
∴△ANC≌△AMC,
∴∠ACN=∠ACM,
∵AB=AC,点N为AC的中点,
∴平行四边形ATBN是矩形,
∴∠TAB=∠ABN=∠ACN=∠ACM,∠BAN=∠MAC=∠CAN,AT=BN=NC=MC,
∵OA=OC,
∴∠CAN=∠ACO,
∴∠TAB+∠BAN=∠ACM+∠ACO=90︒,
∴∠OAT=∠OCM=90︒,
在Rt△OAT和Rt△OCM中,
∵AT=CM,∠OAT=∠OCM ,OA=OC,
∴Rt△OAT≌Rt△OCM(SAS),
∴∠AOT=∠COM,OT=OM,
∴∠AOT+∠AOM=∠COM+∠AOM,
∴∠TOM=∠AOC
∵OA=OC,OT=OM,
∵,
∴;
②如图所示,连接OP,
∵,
∴∠OTM=∠OAP,
∴点O、T、A、P共圆,
∵∠OAT=90︒,
∴OT为圆的直径,
∴∠OPT=90︒,
∵OT=OM,
∴点P为TM的中点,
∵由(1)得△TAD≌△CND,
∴TD=CD,
∴点D为TC的中点,
∴DP为△TCM的中位线,
∴.
3. (2021•湖北省荆州市)在矩形ABCD中,AB=2,AD=4,F是对角线AC上不与点A,C重合的一点,过F作FE⊥AD于E,将△AEF沿EF翻折得到△GEF,点G在射线AD上,连接CG.
(1)如图1,若点A的对称点G落在AD上,∠FGC=90°,延长GF交AB于H,连接CH.
①求证:△CDG∽△GAH;
②求tan∠GHC.
(2)如图2,若点A的对称点G落在AD延长线上,∠GCF=90°,判断△GCF与△AEF是否全等,并说明理由.
【分析】(1)①由矩形的性质和同角的余角相等证明△CDG与△GAH的两组对应角相等,从而证明△CDG∽△GAH;
②由翻折得∠AGB=∠DAC=∠DCG,而tan∠DAC=,可求出DG的长,进而求出GA的长,由tan∠GHC即∠GHC的对边与邻边的比恰好等于相似三角形△CDG与△GAH的一组对应边的比,由此可求出tan∠GHC的值;
(2)△GCF与△AEF都是直角三角形,由tan∠DAC=可分别求出CG、AG、AE、EF、AF、CF的长,再由直角边的比不相等判断△GCF与△AEF不全等.
【解答】(1)如图1,
①证明:∵四边形ABCD是矩形,
∴∠D=∠GAH=90°,
∴∠DCG+∠DGC=90°,
∵∠FGC=90°,
∴∠AGH+∠DGC=90°,
∴∠DCG=∠AGH,
∴△CDG∽△GAH.
②由翻折得∠EGF=∠EAF,
∴∠AGH=∠DAC=∠DCG,
∵CD=AB=2,AD=4,
∴=tan∠DAC==,
∴DG=CD=×2=1,
∴GA=4﹣1=3,
∵△CDG∽△GAH,
∴,
∴tan∠GHC==.
(2)不全等,理由如下:
∵AD=4,CD=2,
∴AC==,
∵∠GCF=90°,
∴=tan∠DAC=,
∴CG=AC=×2=,
∴AG==5,
∴EA=AG=,
∴EF=EA•tan∠DAC==,
∴AF==,
∴CF=2=,
∵∠GCF=∠AEF=90°,而CG≠EA,CF≠EF,
∴△GCF与△AEF不全等.
4. (2021•广西玉林市)如图,在中,在上,,.
(1)求证:∽;
(2)若,求的值.
【答案】(1)见详解;(2)
5. (2021•山西省中考)阅读与思考,请阅读下列科普材料,并完成相应的任务.
图算法
图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:得出,当时,.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.
再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?
我们可以利用公式求得的值,也可以设计一种图算法直接得出结果:我们先来画出一个的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.
图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.
任务:
(1)请根据以上材料简要说明图算法的优越性;
(2)请用以下两种方法验证第二个例子中图算法的正确性:
①用公式计算:当,时,的值为多少;
②如图,在中,,是的角平分线,,,用你所学的几何知识求线段的长.
(1)图算法方便;直观;或不用公式计算即可得出结果等;(2)①;②
【分析】
(1)根据题意可直接进行求解问题;
(2)①利用公式可直接把,代入求解即可;②过点作,交的延长线于点,由题意易得,则有,,然后可得为等边三角形,则,所以可得,最后利用相似三角形的性质可求解.
【详解】
(1)解:答案不唯一,如:图算法方便;直观;或不用公式计算即可得出结果等.
(2)①解:当,时,,
∴.
②解:过点作,交的延长线于点,如图所示:
∵平分,
∴,
∵,
∴,,
∴,
∴,
∴为等边三角形,
∴,
∵,,
∴,
∴,
∴,
∴.
6. .(2021•广东省)如题图,边长为的正方形中,点为的中点.连接,将沿 折叠得到,交于点,求的长.
【答案】
解:延长交于连.
由沿折叠得到.
,,
为中点,
,
,
正方形
,
在和中,
又,
,
,
,
,
,
,
,
,
,
,
由勾股定理得:.
.
7. (2021•江苏省南京市)如图,与交于点O,,E为延长线上一点,过点E作,交的延长线于点F.
(1)求证;
(2)若,求的长.
【答案】(1)证明见解析;(2)
【解析】
【分析】(1)直接利用“AAS”判定两三角形全等即可;
(2)先分别求出BE和DC的长,再利用相似三角形的判定与性质进行计算即可.
【详解】解:(1)∵,
又∵,
∴;
(2)∵,
∴,,
∵,
∴,
∴,
∴,
∴,
∴的长为.
8. (2021•绥化市)如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点,为平面直角坐标系的原点,矩形的4个顶点均在格点上,连接对角线.
(1)在平面直角坐标系内,以原点为位似中心,把缩小,作出它的位似图形,并且使所作的位似图形与的相似比等于;
(2)将以为旋转中心,逆时针旋转,得到,作出,并求出线段旋转过程中所形成扇形的周长.
【答案】(1)见详解;(2)见详解; 弧长
【解析】
【分析】(1)根据位似图形的定义作图即可;(定义:如果两个图形不仅相似,而且对应点的连线交于一点,这两个图形叫做位似图形,交点叫做位似中心;)
(2)根据图形旋转的方法:将顶点与旋转中心的连线旋转即可得旋转后的图形;OB旋转后扇形的半径为OB长度,在坐标网格中,根据直角三角形勾股定理可得OB长度,然后代入扇形弧长公式,同时加上扇形两半径即可求出答案.
【详解】(1)位似图形如图所示
(2)作出旋转后图形,
,
周长是.
相关试卷
这是一份2021年全国中考数学真题分类汇编:三角形(无答案),共17页。
这是一份2021年全国中考数学真题分类汇编:相似三角形(无答案),共12页。
这是一份2021年全国中考数学真题分类汇编--三角形:相似三角形(答案版 ),共33页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。