![高考数学一轮复习 第十章 第2节 试卷01](http://img-preview.51jiaoxi.com/3/3/6028340/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高考数学一轮复习 第十章 第2节 试卷02](http://img-preview.51jiaoxi.com/3/3/6028340/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高考数学一轮复习 第十章 第2节 试卷03](http://img-preview.51jiaoxi.com/3/3/6028340/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高考数学一轮复习 第十章 第2节
展开知 识 梳 理
1.排列与组合的概念
2.排列数与组合数
(1)从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.
(2)从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.
3.排列数、组合数的公式及性质
[微点提醒]
1.解受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排除法).分类时标准应统一,避免出现重复或遗漏.
2.对于分配问题,一般先分组,再分配,注意平均分组与不平均分组的区别,避免重复或遗漏.
基 础 自 测
1.判断下列结论正误(在括号内打“√”或“×”)
(1)所有元素完全相同的两个排列为相同排列.( )
(2)一个组合中取出的元素讲究元素的先后顺序.( )
(3)若组合式Ceq \\al(x,n)=Ceq \\al(m,n),则x=m成立.( )
(4)(n+1)!-n!=n·n!.( )
(5)kCeq \\al(k,n)=nCeq \\al(k-1,n-1).( )
解析 (1)元素相同但顺序不同的排列是不同的排列,故(1)错;(2)一个组合中取出的元素不讲究顺序,元素相同即为同一组合,故(2)错;(3)若Ceq \\al(x,n)=Ceq \\al(m,n),则x=m或n-m,故(3)错.
答案 (1)× (2)× (3)× (4)√ (5)√
2.(选修2-3P18例3改编)从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是( )
A.12 B.24 C.64 D.81
解析 4本不同的课外读物选3本分给3位同学,每人一本,则不同的分配方法种数为Aeq \\al(3,4)=24.
答案 B
3.(选修2-3P26知识改编)计算Ceq \\al(3,7)+Ceq \\al(4,7)+Ceq \\al(5,8)+Ceq \\al(6,9)的值为________(用数字作答).
解析 原式=Ceq \\al(4,8)+Ceq \\al(5,8)+Ceq \\al(6,9)=Ceq \\al(5,9)+Ceq \\al(6,9)=Ceq \\al(6,10)=Ceq \\al(4,10)=210.
答案 210
4.(2019·济宁质检)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )
A.144 B.120 C.72 D.24
解析 “插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为Aeq \\al(3,4)=4×3×2=24.
答案 D
5.(一题多解)(2018·全国Ⅰ卷)从2位女生、4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种(用数字作答).
解析 法一 可分两种情况:第一种情况,只有1位女生入选,不同的选法有Ceq \\al(1,2)Ceq \\al(2,4)=12种;第二种情况,有2位女生入选,不同的选法有Ceq \\al(2,2)Ceq \\al(1,4)=4种.根据分类加法计数原理知,至少有1位女生入选的不同的选法有12+4=16种.
法二 从6人中任选3人,不同的选法有Ceq \\al(3,6)=20种,从6人中任选3人都是男生,不同的选法有Ceq \\al(3,4)=4种,所以至少有1位女生入选的不同的选法有20-4=16种.
答案 16
6.(2018·浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成________个没有重复数字的四位数(用数字作答).
解析 若取的4个数字不包括0,则可以组成的四位数的个数为Ceq \\al(2,5)Ceq \\al(2,3)Aeq \\al(4,4);若取的4个数字包括0,则可以组成的四位数的个数为Ceq \\al(2,5)Ceq \\al(1,3)Ceq \\al(1,3)Aeq \\al(3,3).综上,一共可以组成的没有重复数字的四位数的个数为Ceq \\al(2,5)Ceq \\al(2,3)Aeq \\al(4,4)+Ceq \\al(2,5)Ceq \\al(1,3)Ceq \\al(1,3)Aeq \\al(3,3)=720+540=1 260.
答案 1 260
考点一 排列问题
【例1】 有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.
(1)选5人排成一排;
(2)排成前后两排,前排3人,后排4人;
(3)全体排成一排,女生必须站在一起;
(4)全体排成一排,男生互不相邻;
(5)(一题多解)全体排成一排,其中甲不站最左边,也不站最右边;
(6)(一题多解)全体排成一排,其中甲不站最左边,乙不站最右边.
解 (1)从7人中选5人排列,有Aeq \\al(5,7)=7×6×5×4×3=2 520(种).
(2)分两步完成,先选3人站前排,有Aeq \\al(3,7)种方法,余下4人站后排,有Aeq \\al(4,4)种方法,共有Aeq \\al(3,7)·Aeq \\al(4,4)=5 040(种).
(3)(捆绑法)将女生看作一个整体与3名男生一起全排列,有Aeq \\al(4,4)种方法,再将女生全排列,有Aeq \\al(4,4)种方法,共有Aeq \\al(4,4)·Aeq \\al(4,4)=576(种).
(4)(插空法)先排女生,有Aeq \\al(4,4)种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有Aeq \\al(3,5)种方法,共有Aeq \\al(4,4)·Aeq \\al(3,5)=1 440(种).
(5)法一 (特殊元素优先法)先排甲,有5种方法,其余6人有Aeq \\al(6,6)种排列方法,共有5×Aeq \\al(6,6)=3 600(种).
法二 (特殊位置优先法)左右两边位置可安排另6人中的两人,有Aeq \\al(2,6)种排法,其他有Aeq \\al(5,5)种排法,共有Aeq \\al(2,6)Aeq \\al(5,5)=3 600(种).
(6)法一 (特殊元素优先法)甲在最右边时,其他的可全排,有Aeq \\al(6,6)种方法;甲不在最右边时,可从余下的5个位置任选一个,有Aeq \\al(1,5)种,而乙可排在除去最右边的位置后剩下的5个中任选一个有Aeq \\al(1,5)种,其余人全排列,只有Aeq \\al(5,5)种不同排法,共有Aeq \\al(6,6)+Aeq \\al(1,5)Aeq \\al(1,5)Aeq \\al(5,5)=3 720.
法二 (间接法)7名学生全排列,只有Aeq \\al(7,7)种方法,其中甲在最左边时,有Aeq \\al(6,6)种方法,乙在最右边时,有Aeq \\al(6,6)种方法,其中都包含了甲在最左边且乙在最右边的情形,有Aeq \\al(5,5)种方法,故共有Aeq \\al(7,7)-2Aeq \\al(6,6)+Aeq \\al(5,5)=3 720(种).
规律方法 排列应用问题的分类与解法
(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.
(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.
【训练1】 (2019·天津和平区二模)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为( )
A.120 B.240 C.360 D.480
解析 第一步,从甲、乙、丙三人选一个加到前排,有3种,第二步,前排3人形成了4个空,任选一个空加一人,有4种,第三步,后排4人形成了5个空,任选一个空加一人有5种,此时形成6个空,任选一个空加一人,有6种,根据分步乘法计数原理有3×4×5×6=360种方法.
答案 C
考点二 组合问题
【例2】 某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.
(1)其中某一种假货必须在内,不同的取法有多少种?
(2)其中某一种假货不能在内,不同的取法有多少种?
(3)恰有2种假货在内,不同的取法有多少种?
(4)至少有2种假货在内,不同的取法有多少种?
(5)至多有2种假货在内,不同的取法有多少种?
解 (1)从余下的34种商品中,选取2种有Ceq \\al(2,34)=561(种),∴某一种假货必须在内的不同取法有561种.
(2)从34种可选商品中,选取3种,有Ceq \\al(3,34)种或者Ceq \\al(3,35)-Ceq \\al(2,34)=Ceq \\al(3,34)=5 984(种).
∴某一种假货不能在内的不同取法有5 984种.
(3)从20种真货中选取1件,从15种假货中选取2件有Ceq \\al(1,20)Ceq \\al(2,15)=2 100(种).
∴恰有2种假货在内的不同的取法有2 100种.
(4)选取2种假货有Ceq \\al(1,20)Ceq \\al(2,15)种,选取3种假货有Ceq \\al(3,15)种,共有选取方式Ceq \\al(1,20)Ceq \\al(2,15)+Ceq \\al(3,15)=2 100+455=2 555(种).
∴至少有2种假货在内的不同的取法有2 555种.
(5)选取3种的总数为Ceq \\al(3,35),选取3种假货有Ceq \\al(3,15)种,因此共有选取方式
Ceq \\al(3,35)-Ceq \\al(3,15)=6 545-455=6 090(种).
∴至多有2种假货在内的不同的取法有6 090种.
规律方法 组合问题常有以下两类题型变化:
(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.
(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.
【训练2】 (1)(一题多解)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )
A.14 B.24 C.28 D.48
(2)(2019·杭州二模)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )
A.60种 B.63种 C.65种 D.66种
解析 (1)法一 4人中至少有1名女生包括1女3男及2女2男两种情况,故不同的选派方案种数为
Ceq \\al(1,2)·Ceq \\al(3,4)+Ceq \\al(2,2)·Ceq \\al(2,4)=2×4+1×6=14.
法二 从4男2女中选4人共有Ceq \\al(4,6)种选法,4名都是男生的选法有Ceq \\al(4,4)种,故至少有1名女生的选派方案种数为Ceq \\al(4,6)-Ceq \\al(4,4)=15-1=14.
(2)共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有Ceq \\al(4,5)+Ceq \\al(4,4)+Ceq \\al(2,5)Ceq \\al(2,4)=66(种).
答案 (1)A (2)D
考点三 分组、分配问题
【例3】 (1)国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教,现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.
(2)(2019·西安月考)某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有( )
A.80种 B.90种 C.120种 D.150种
(3)A,B,C,D,E,F六人围坐在一张圆桌上开会,A是会议的中心发言人,必须坐最北面的椅子,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的坐法有( )
A.24种 B.30种 C.48种 D.60种
解析 (1)先把6个毕业生平均分成3组,有eq \f(Ceq \\al(2,6)Ceq \\al(2,4)Ceq \\al(2,2),Aeq \\al(3,3))种方法,再将3组毕业生分到3所学校,有Aeq \\al(3,3)=6种方法,故6个毕业生平均分到3所学校,共有eq \f(Ceq \\al(2,6)Ceq \\al(2,4)Ceq \\al(2,2),Aeq \\al(3,3))·Aeq \\al(3,3)=90种分派方法.
(2)分两类:一类,第一步将5名老师按2,2,1分成3组,其分法有eq \f(Ceq \\al(2,5)Ceq \\al(2,3)Ceq \\al(1,1),Aeq \\al(2,2))种,第二步将分好的3组分派到3个学校,则有eq \f(Ceq \\al(2,5)Ceq \\al(2,3)Ceq \\al(1,1),Aeq \\al(2,2))·Aeq \\al(3,3)=90种分派方法;
另一类,第一步将5名老师按3,1,1分成3组,其分法有eq \f(Ceq \\al(3,5)Ceq \\al(1,2)Ceq \\al(1,1),Aeq \\al(2,2))种,第二步将分好的3组分派到3个学校,则有eq \f(Ceq \\al(3,5)Ceq \\al(1,2)Ceq \\al(1,1),Aeq \\al(2,2))Aeq \\al(3,3)=60种分派方法.
所以不同的分派方法的种数为90+60=150(种).
(3)B,C二人必须坐相邻的两把椅子,有4种情况,B,C可以交换位置,有Aeq \\al(2,2)=2种情况;其余三人坐剩余的三把椅子,有Aeq \\al(3,3)=6种情况,故共有4×2×6=48种情况.
答案 (1)90 (2)D (3)C
规律方法 1.对于整体均分问题,往往是先分组再排列,在解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以Aeq \\al(n,n)(n为均分的组数),避免重复计数.
2.对于部分均分问题,解题时要注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!.
3.对于不等分问题,首先要对分配数量的可能情形进行一一列举,然后再对每一种情形分类讨论.在每一类的计数中,又要考虑是分步计数还是分类计数,是排列问题还是组合问题.
【训练3】 (1)(2017·全国Ⅱ卷)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )
A.12种 B.18种 C.24种 D.36种
(2)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).
解析 (1)先把4项工作分为2,1,1共3组,有eq \f(Ceq \\al(2,4)Ceq \\al(1,2)Ceq \\al(1,1),Aeq \\al(2,2))=6种分法,再将3组对应3个志愿者,有Aeq \\al(3,3)=6种情况,由分步乘法计数原理,故安排方式有6×6=36种.
(2)分情况:一种情况将有奖的奖券按2张、1张分给4个人中的2个人,种数为Ceq \\al(2,3)Ceq \\al(1,1)Aeq \\al(2,4)=36;另一种将3张有奖的奖券分给4个人中的3个人,种数为Aeq \\al(3,4)=24,则获奖情况总共有36+24=60(种).
答案 (1)D (2)60
[思维升华]
1.对于有附加条件的排列、组合应用题,通常从三个途径考虑
(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.
(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.
2.排列、组合问题的求解方法与技巧
(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题倍除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.
[易错防范]
1.区分一个问题属于排列问题还是组合问题,关键在于是否与顺序有关.如果与顺序有关,则是排列;如果与顺序无关,则是组合.
2.解组合应用题时,应注意“至少”、“至多”、“恰好”等词的含义.
基础巩固题组
(建议用时:35分钟)
一、选择题
1.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )
A.8 B.24 C.48 D.120
解析 末位数字排法有Aeq \\al(1,2)种,其他位置排法有Aeq \\al(3,4)种,共有Aeq \\al(1,2)Aeq \\al(3,4)=48(种).
答案 C
2.不等式Aeq \\al(x,8)<6×Aeq \\al(x-2,8)的解集为( )
A.{2,8} B.{2,6} C.{7,12} D.{8}
解析 eq \f(8!,(8-x)!)<6×eq \f(8!,(10-x)!),
∴x2-19x+84<0,解得7
∴7
3.从6本不同的书中选出4本,分别发给4个同学,已知其中两本书不能发给甲同学,则不同分配方法有( )
A.180种 B.220种 C.240种 D.260种
解析 因为其中两本书不能发给甲同学,所以甲只能从剩下的4本中分一本,然后再选3本分给3个同学,故有Aeq \\al(1,4)·Aeq \\al(3,5)=240种.
答案 C
4.(一题多解)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是( )
A.18 B.24 C.30 D.36
解析 法一 选出的3人中有2名男同学1名女同学的方法有Ceq \\al(2,4)Ceq \\al(1,3)=18种,选出的3人中有1名男同学2名女同学的方法有Ceq \\al(1,4)Ceq \\al(2,3)=12种,故3名学生中男女生都有的选法有Ceq \\al(2,4)Ceq \\al(1,3)+Ceq \\al(1,4)Ceq \\al(2,3)=30种.
法二 从7名同学中任选3名的方法数,再除去所选3名同学全是男生或全是女生的方法数,即Ceq \\al(3,7)-Ceq \\al(3,4)-Ceq \\al(3,3)=30.
答案 C
5.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( )
A.9 B.10 C.18 D.20
解析 由于lg a-lg b=lg eq \f(a,b)(a>0,b>0),
∴lg eq \f(a,b)有多少个不同的值,只需看eq \f(a,b)不同值的个数.
从1,3,5,7,9中任取两个作为eq \f(a,b)有Aeq \\al(2,5)种,又eq \f(1,3)与eq \f(3,9)相同,eq \f(3,1)与eq \f(9,3)相同,∴lg a-lg b的不同值的个数有Aeq \\al(2,5)-2=18.
答案 C
6.10名同学合影,站成了前排3人,后排7人,现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为( )
A.Ceq \\al(2,7)Aeq \\al(5,5) B.Ceq \\al(2,7)Aeq \\al(2,2) C.Ceq \\al(2,7)Aeq \\al(2,5) D.Ceq \\al(2,7)Aeq \\al(3,5)
解析 首先从后排的7人中抽2人,有Ceq \\al(2,7)种方法;再把2个人在5个位置中选2个位置进行排列有Aeq \\al(2,5)种.由分步乘法计数原理知不同调整方法种数是Ceq \\al(2,7)Aeq \\al(2,5).
答案 C
7.(2019·济南模拟)有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有( )
A.34种 B.48种 C.96种 D.144种
解析 特殊元素优先安排,先让甲从头、尾中选取一个位置,有Ceq \\al(1,2)种选法,乙、丙相邻,有4种情况,乙、丙可以交换位置,有Aeq \\al(2,2)种情况,其余3人站剩余的3个位置,有Aeq \\al(3,3)种情况,由分步乘法计数原理知共有4Ceq \\al(1,2)Aeq \\al(2,2)Aeq \\al(3,3)=96种.
答案 C
8.福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有( )
A.90种 B.180种 C.270种 D.360种
解析 根据题意,分3步进行分析:①在6位志愿者中任选1个,安排到甲展区,有Ceq \\al(1,6)=6种情况;②在剩下的5个志愿者中任选1个,安排到乙展区,有Ceq \\al(1,5)=5种情况;③将剩下的4个志愿者平均分成2组,然后安排到剩下的2个展区,有eq \f(Ceq \\al(2,4)Ceq \\al(2,2),Aeq \\al(2,2))×Aeq \\al(2,2)=6种情况,则一共有6×5×6=180种不同的安排方案.
答案 B
二、填空题
9.从6名同学中选派4人分别参加数学、物理、化学、生物四科知识竞赛,若其中甲、乙两名同学不能参加生物竞赛,则选派方案共有________种(用数字作答).
解析 特殊位置优先考虑,既然甲、乙都不能参加生物竞赛,则从另外4个人中选择一人参加,有Ceq \\al(1,4)种方案;然后从剩下的5个人中选择3个人参加剩下3科,有Aeq \\al(3,5)种方案.故共有Ceq \\al(1,4)Aeq \\al(3,5)=4×60=240种方案.
答案 240
10.已知eq \f(1,Ceq \\al(m,5))-eq \f(1,Ceq \\al(m,6))=eq \f(7,10Ceq \\al(m,7)),则m=________.
解析 由组合数公式化简整理得m2-23m+42=0解得m=2或m=21(舍去).
答案 2
11.在一展览会上,要展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该次展出这5件作品不同的摆放方案共有________种(用数字作答).
解析 将2件必须相邻的书法作品看作一个整体,同1件建筑设计展品全排列,再将2件不能相邻的绘画作品插空,故共有Aeq \\al(2,2)Aeq \\al(2,2)Aeq \\al(2,3)=24种不同的展出方案.
答案 24
12.(2019·烟台模拟)某班主任准备请2019届毕业生做报告,要从甲、乙等8人中选4人发言,要求甲、乙两人至少一人参加,若甲、乙同时参加,则他们发言中间需恰隔一人,那么不同的发言顺序共有________种(用数字作答).
解析 若甲、乙同时参加,有Ceq \\al(2,2)Ceq \\al(2,6)Ceq \\al(1,2)Aeq \\al(2,2)Aeq \\al(2,2)=120种,若甲、乙有一人参与,有Ceq \\al(1,2)Ceq \\al(3,6)Aeq \\al(4,4)=960种,从而总共的发言顺序有1 080种.
答案 1 080
能力提升题组
(建议用时:15分钟)
13.甲、乙、丙、丁四位同学高考之后计划去A,B,C三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A社区, 乙不去B社区,则不同的安排方法种数为( )
A.8 B.7 C.6 D.5
解析 根据题意,分2种情况:①乙和甲一起去A社区,此时将丙丁二人安排到B,C社区即可,有Aeq \\al(2,2)=2种情况,②乙不去A社区,则乙必须去C社区,若丙丁都去B社区,有1种情况,若丙丁中有1人去B社区,则先在丙丁中选出1人,安排到B社区,剩下1人安排到A或C社区,有2×2=4种情况,则不同的安排方法种数有2+1+4=7.
答案 B
14.(2019·天津和平区一模)把8个相同的小球全部放入编号为1,2,3,4的四个盒中,则不同的放法种数为( )
A.35 B.70 C.165 D.1 860
解析 根据题意,分4种情况讨论:
①没有空盒,将8个相同的小球排成一列, 排好后,各球之间共有7个空位,在7个空位中任选3个,插入隔板,将小球分成4组,顺次对应4个盒子,有Ceq \\al(3,7)=35种放法;
②有1个空盒,在4个盒中任选3个,放入小球,有Ceq \\al(3,4)=4种选法,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选2个,插入隔板,将小球分成3组,顺次对应3个盒子,有Ceq \\al(2,7)=21种分组方法,则有4×21=84种放法;
③有2个空盒,在4个盒中任选2个,放入小球,有Ceq \\al(2,4)=6种选法,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选1个,插入隔板,将小球分成2组,顺次对应2个盒子,有Ceq \\al(1,7)=7种分组方法,则有6×7=42种方法;
④有3个空盒,即将8个小球全部放进1个盒子,有4种放法.
故一共有35+84+42+4=165种放法.
答案 C
15.(2019·江西八所重点中学模拟)摄像师要对已坐定一排照像的5位小朋友的座位顺序进行调整,要求其中恰有2人座位不调整,则不同的调整方案的种数为________(用数字作答).
解析 从5人中任选3人有Ceq \\al(3,5)种,将3人位置全部进行调整,有Ceq \\al(1,2)·Ceq \\al(1,1)·Ceq \\al(1,1)种.
故有N=Ceq \\al(3,5)·Ceq \\al(1,2)·Ceq \\al(1,1)·Ceq \\al(1,1)=20种调整方案.
答案 20
16.设集合A={(x1,x2,x3,x4,x5)|xi∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素有________个(用数字作答).
解析 因为xi∈{-1,0,1},i=1,2,3,4,5,且1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3,所以xi中至少两个为0,至多四个为0.
①xi(i=1,2,3,4,5)中4个0,1个为-1或1,A有2Ceq \\al(1,5)=10个元素;
②xi中3个0,2个为-1或1,A有Ceq \\al(2,5)×2×2=40个元素;
③xi中2个0,3个为-1或1,A有Ceq \\al(3,5)×2×2×2=80个元素;
从而,集合A中共有10+40+80=130个元素.
答案 130
新高考创新预测
17.(多填题)将甲、乙等5位同学分别保送到北京大学、上海交通大学、浙江大学三所大学就读,每所大学至少保送一人.
(1)有________种不同的保送方法;
(2)若甲不能被保送到北大,有________种不同的保送方法.
解析 (1)5名学生可分成2,2,1和3,1,1两种形式,当5名学生分成2,2,1时,共有eq \f(1,2)Ceq \\al(2,5)Ceq \\al(2,3)Aeq \\al(3,3)=90种方法;当5名学生分成3,1,1时,共有Ceq \\al(3,5)Aeq \\al(3,3)=60种方法.根据分类加法计数原理知共有90+60=150种保送方法.
(2)先将五人分成三组,因为要求每组至少一人,所以可选择的只有2,2,1或3,1,1,所以有eq \f(Ceq \\al(2,5)Ceq \\al(2,3)Ceq \\al(1,1),Aeq \\al(2,2))+eq \f(Ceq \\al(3,5)Ceq \\al(1,2)Ceq \\al(1,1),Aeq \\al(2,2))=25(种)分组方法.因为甲不能被保送到北大,所以有甲的那组只有上海交大和浙大两个选择,剩下的两组无限制,一共有4种方法,所以不同的保送方案共有25×4=100(种).
答案 (1)150 (2)100名称
定义
排列
从n个不同元素中取出m(m≤n)个不同元素
按照一定的顺序排成一列
组合
合成一组
公式
(1)Aeq \\al(m,n)=n(n-1)(n-2)…(n-m+1)=eq \f(n!,(n-m)!).
(2)Ceq \\al(m,n)=eq \f(Aeq \\al(m,n),Aeq \\al(m,m))=eq \f(n(n-1)(n-2)…(n-m+1),m!)
=eq \f(n!,m!(n-m)!)(n,m∈N*,且m≤n).特别地Ceq \\al(0,n)=1
性质
(1)0!=1;Aeq \\al(n,n)=n!.
(2)Ceq \\al(m,n)=Ceq \\al(n-m,n);Ceq \\al(m,n+1)=Ceq \\al(m,n)+Ceq \\al(m-1,n)
高考数学一轮复习 第十章 第6节: 这是一份高考数学一轮复习 第十章 第6节,共16页。试卷主要包含了离散型随机变量的分布列及性质,常见离散型随机变量的分布列,设随机变量X的概率分布列为等内容,欢迎下载使用。
高考数学一轮复习 第十章 第8节: 这是一份高考数学一轮复习 第十章 第8节,共20页。试卷主要包含了均值与方差的性质,两点分布与二项分布的均值、方差,一批产品的二等品率为0,5,等内容,欢迎下载使用。
高考数学一轮复习 第十章 第7节: 这是一份高考数学一轮复习 第十章 第7节,共20页。试卷主要包含了事件的相互独立性,全概率公式,独立重复试验与二项分布,正态分布,682__6;,已知随机变量X~N,若P=0,26%,P=95,某次知识竞赛规则如下等内容,欢迎下载使用。