专题7.3 临界知识问题-2020届高考数学压轴题讲义(选填题)(原卷版)
展开【方法综述】
对于临界知识问题,其命题大致方向为从形式上跳出已学知识的旧框框,在试卷中临时定义一种新知识,要求学生快速处理,及时掌握,并正确运用,充分考查学生独立分析问题与解决问题的能力,多与函数、平面向量、数列联系考查.
另外,以高等数学为背景,结合中学数学中的有关知识编制综合性问题,是近几年高考试卷的热点之一,常涉及取整函数、最值函数、有界函数、有界泛函数等.
【解题策略】
类型一 定义新知型临界问题
【例1】用C(A)表示非空集合A中的元素个数,定义A*B=若A={1,2},B={x|(x2+ax)·(x2+ax+2)=0},且A*B=1,设实数a的所有可能取值组成的集合是S,则C(S)等于( )
A. 1 B. 3 C. 5 D. 7
【指点迷津】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.
【举一反三】
1.【北京市顺义区2019届高三第二次统练】已知集合,若对于 , ,使得成立,则称集合是“互垂点集”.给出下列四个集合:; ;;.其中是“互垂点集”集合的为( )
A. B. C. D.
2.【陕西省2019届高三第二次检测】已知集合,若对于任意,存在,使得成立,则称集合是“垂直对点集”.给出下列四个集合:
① ②
③ ④
其中是“垂直对点集”的序号是________.
类型二 高等数学背景型临界问题
【例2】设S是实数集R的非空子集,若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题:①集合S={a+b|a,b为整数}为封闭集;②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足S⊆T⊆R的任意集合T也是封闭集.其中真命题是________.(写出所有真命题的序号)
【举一反三】【湖南省衡阳市2019届高三二模】若两函数具有相同的定义域、单调区间、奇偶性、值域,则称这两函数为“亲密函数”.下列三个函数,,中,与函数不是亲密函数的个数为( )
A.0 B.1 C.2 D.3
类型三 立体几何中的临界问题
立体几何的高考题中,最主要考查点是几何元素位置关系及角、距离的计算、三视图等,除此之外,还有可能涉及到与立体几何相关的临界知识,如立体几何与其他知识的交汇,面对这些问题,需要有较强的分析判断能力及思维转换能力,还需要我们对这些问题作一些分析归类,加强知识间的联系,才能让所学知识融会贯通.
【例3】点为棱长是的正方体的内切球球面上的动点,点满足,则动点的轨迹的长度为__________.
【举一反三】已知正方体的体积为1,点在线段上(点异于、两点),点为线段的中点,若平面截正方体所得的截面为四边形,则线段的取值范围为( )
A. B. C. D.
【强化训练】
一、 选择题
1.已知集合2,3,,集合是集合A的子集,若 且2,,,满足集合B的个数记为,则
A.9 B.10 C.11 D.12
2.【河南省郑州市2019年高三第二次质量检测】高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数.例如:,,已知函数,则函数的值域为( )
A. B. C. D.
3.【河南省南阳市第一中学2019届高三第十四次考】定义集合运算:A⊙B={,x∈A,y∈B},设集合A={,0,1},B={},则集合A⊙B的所有元素之和为( )
A.1 B.0 C. D.
4.【广西壮族自治区柳州市2019届高三3月模拟】 定义:,如,则( )
A.0 B. C. D.1
5.【北京市门头沟区2019年3月高三综合练习】若函数图象上存在两个点A,B关于原点对称,则点对称为函数的“友好点对”且点对与可看作同一个“友好点对”若函数其中e为自然对数的底数,恰好有两个“友好点对”则实数m的取值范围为
A. B. C. D.
6.【江西省上高县第二中学2019届高三3月月考】定义:若数列对任意的正整数,都有为常数,则称为“绝对和数列”,叫做“绝对公和” .已知“绝对和数列”中,,绝对公和为3,则其前2019项的和的最小值为( )
A. B. C. D.
7.【四川省凉山州2019届高三二诊】我们把叫“费马数”(费马是十七世纪法国数学家).设,,,,表示数列的前项之和,则使不等式成立的最小正整数的值是( )
A. B. C. D.
二、填空题
8.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知正四棱柱和半径为的半球O,底面ABCD在半球O底面所在平面上,,,,四点均在球面上,则该正四棱柱的体积的最大值为______.
9.【上海市交大附中2019届高三上9月开学】由无理数论引发的数字危机一直延续到19世纪,直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机,所谓戴德金分割,是指将有理数集划分为两个非空的子集与,且满足,,中的每一个元素都小于中的每一个元素,则称为戴德金分割.试判断,对于任一戴德金分割,下列选项中,可能成立的是____.
①没有最大元素,有一个最小元素;②没有最大元素,也没有最小元素;
③有一个最大元素,有一个最小元素;④有一个最大元素,没有最小元素.
10.【江西省红色七校2019届高三第二次联考】已知函数,对函数,定义关于的“对称函数”为,满足:对任意,两个点关于点对称,若是关于的“对称函数”,且在上是减函数,则实数的取值范围是__________.
11.【河南省郑州第一中学2019届高三第二次测评】已知二进制和十进制可以相互转化,例如,则十进制数89转化为二进制数为.将对应的二进制数中0的个数,记为(例如:,,,则,,),记,则__________.
12.【上海市七宝中学2019届高三下学期开学】设整数,集合2,,,A,B是P的两个非空子集则所有满足A中的最大数小于B中的最小数的集合对的个数为:______.
13.【河北省石家庄市第二中学2019届高三上期末】定义在正实数上的函数,其中表示不小于x的最小整数,如,,当时,函数的值域为,记集合中元素的个数为,则=____.
14.【上海市南洋模范中学2019届高三3月月考】任意实数,,定义,设函数,数列是公比大于0的等比数列,且,,则____.
15.【北京延庆区2019届高三一模】已知集合 ,集合 满足① 每个集合都恰有7个元素 ; ② .集合中元素的最大值与最小值之和称为集合的特征数,记为(),则 的最大值与最小值的和为_______.
16.【江西省南昌市2019届高三一模】定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个顶点在半径为1的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是__________.
17.【陕西省2019届高三第二次检测】在实数集中定义一种运算“”,具有性质:
(1)对任意;(2)对任意;
(3)对任意 .
则函数的最小值为________.
18.【北京市首都师范大学附属中学2019届高三一模】定义:对于数列,如果存在常数,使对任意正整数,总有成立,那么我们称数列为“﹣摆动数列”.
①若,,,则数列_____“﹣摆动数列”,_____“﹣摆动数列”(回答是或不是);
②已知“﹣摆动数列”满足,.则常数的值为_____.
专题7.2 创新型问题-2020届高考数学压轴题讲义(选填题)(原卷版): 这是一份专题7.2 创新型问题-2020届高考数学压轴题讲义(选填题)(原卷版),共7页。
专题4.1 复杂的三视图问题-2020届高考数学压轴题讲义(选填题)(原卷版): 这是一份专题4.1 复杂的三视图问题-2020届高考数学压轴题讲义(选填题)(原卷版),共11页。
专题6.2 导数中的参数问题-2020届高考数学压轴题讲义(选填题)(原卷版): 这是一份专题6.2 导数中的参数问题-2020届高考数学压轴题讲义(选填题)(原卷版),共5页。