湖南省湘潭市2020年中考数学试卷
展开
湖南省湘潭市2020年中考数学试卷
一、单选题(共8题;共16分)
1.-6的绝对值是( )
A. -6 B. 6 C. - D.
2.地摊经济一词最近彻底火了,发展地摊经济,进行室外经营与有序占道经营,能满足民众消费需求,在一定程度上缓解了就业压力,带动了第三产业发展,同时活跃市场,刺激经济发展,一经推出,相关微博话题阅读量就超过了600000000次,这个数据用科学记数法表示为( )
A. B. C. D.
3.已知 与 是同类项,则 的值是( )
A. 2 B. 3 C. 4 D. 5
4.下列图形中,不是中心对称图形的是( )
A. B. C. D.
5.下列运算中正确的是( )
A. B. C. D.
6.如图, 是 的外角,若 , ,则 ( )
A. B. C. D.
7.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“ 时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“ 时代”的频率是( )
A. 0.25 B. 0.3 C. 25 D. 30
8.如图,直线 经过点 ,当 时,则x的取值范围为( )
A. B. C. D.
二、填空题(共8题;共8分)
9.计算: ________.
10.在数轴上到原点的距离小于4的整数可以为________.(任意写出一个即可)
11.计算: =________.
12.走路被世卫组织认定为“世界上最好的运动”,每天走6000步是走路最健康的步数.手机下载微信运动,每天记录自己走路的步数,已经成了不少市民时下的习惯.张大爷连续记录了3天行走的步数为:6200步、5800步、7200步,这3天步数的平均数是________步.
13.若 ,则 ________.
14.如图,在半径为6的 中,圆心角 ,则阴影部分面积为________.
15.如图,点P是 的角平分线上一点, ,垂足为点D,且 ,点M是射线 上一动点,则 的最小值为________.
16.算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:
数字 形式 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
纵式 | | | || | ||| | |||| | ||||| | ||||
横式 |
表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如下: ,则 表示的数是________.
三、解答题(共10题;共91分)
17.解分式方程: .
18.化简求值: ,其中 .
19.生死守护,致敬英雄.湘潭28名医护人员所在的湖南对口支援湖北黄冈医疗队红安分队,精心救治每一位患者,出色地完成了医疗救治任务.为致敬英雄,某校音乐兴趣小组根据网络盛传的“红旗小姐姐”跳的儋州调声组建了舞蹈队.现需要选取两名学生作为舞蹈队的领舞,甲、乙两班各推荐了一男生和一女生.(温馨提示:用男1、女1;男2、女2分别表示甲、乙两班4个学生)
(1)请用列举的方法写出所有可能出现的结果;
(2)若选取的两人来自不同的班级,且按甲、乙两班先后顺序选取.请用列表或画树状图的方法求出恰好选中一男一女的概率.
20.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形 为矩形, ,其坡度为 ,将步梯 改造为斜坡 ,其坡度为 ,求斜坡 的长度.(结果精确到 ,参考数据: , )
21.“停课不停学”.突如其来的新冠肺炎疫情让网络学习成为了今年春天一道别样的风景.隔离的是身体,温暖的是人心.“幸得有你,山河无恙”.在钟南山、白衣天使等人众志成城下,战胜了疫情.在春暖花开,万物复苏之际,某校为了解九年级学生居家网络学习情况,以便进行有针对性的教学安排,特对他们的网络学习时长(单位:小时)进行统计.现随机抽取20名学生的数据进行分析:
收集数据:4.5,6,5.5,6.5,6.5,5.5,7,6,7.5,8,6.5,8,7.5,5.5,6.5,7,6.5,6,6.5,5
整理数据:
时长 (小时) | ||||
人数 | 2 | 8 | 4 |
分析数据:
项目 | 平均数 | 中位数 | 众数 |
数据 | 6.4 | 6.5 | b |
应用数据:
(1)填空:a=________,b=________;
(2)补全频数直方图;
(3)若九年级共有1000人参与了网络学习,请估计学习时长在 小时的人数.
22.如图,在 中, ,以 为直径的 交 于点D,过点D作 ,垂足为点E.
(1)求证: ;
(2)判断直线 与 的位置关系,并说明理由.
23.如图,在平面直角坐标系中,点O为坐标原点,菱形 的顶点A的坐标为 .
(1)求过点B的反比例函数 的解析式;
(2)连接 ,过点B作 交x轴于点D,求直线 的解析式.
24.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届矛盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买2本《北上》和1本《牵风记》需100元;购买6本《北上》与购买7本《牵风记》的价格相同.
(1)求这两种书的单价;
(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?
25.阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.
(1)特例感知:如图(一),已知边长为2的等边 的重心为点O,求 与 的面积.
(2)性质探究:如图(二),已知 的重心为点O,请判断 、 是否都为定值?如果是,分别求出这两个定值:如果不是,请说明理由.
(3)性质应用:如图(三),在正方形 中,点E是 的中点,连接 交对角线 于点M.
①若正方形 的边长为4,求 的长度;
②若 ,求正方形 的面积.
26.如图,抛物线 与x轴交于A,B两点.
(1)若过点C的直线 是抛物线的对称轴.
①求抛物线的解析式;
②对称轴上是否存在一点P,使点B关于直线 的对称点 恰好落在对称轴上.若存在,请求出点P的坐标;若不存在,请说明理由.
(2)当 , 时,函数值y的最大值满足 ,求b的取值范围.
答案解析部分
一、单选题
1.【解析】【解答】负数的绝对值等于它的相反数,所以-6的绝对值是6
故答案为:B
【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.
2.【解析】【解答】解: ,
故答案为:C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
3.【解析】【解答】解:∵ 与 是同类项,
∴n+1=4,
解得,n=3,
故答案为:B.
【分析】根据同类项的概念可得关于n的一元一次方程,求解方程即可得到n的值.
4.【解析】【解答】解:A、不是中心对称图形,故本选项正确;
B、是中心对称图形,故本选项错误;
C、是中心对称图形,故本选项错误;
D、是中心对称图形,故本选项错误;
故选A.
【分析】根据中心对称图形的概念结合选项所给的图形即可得出答案.
5.【解析】【解答】解:A、 ,故A不符合题意;
B、 ,故B不符合题意;
C、 ,符合题意;
D、 ,故D不符合题意;
故答案为:C.
【分析】根据幂的乘方、负整数指数幂、零指数幂以及同底数幂的乘法法则即可逐一判断.
6.【解析】【解答】解:∵ 是 的外角,
∴ =∠B+∠A
∴∠A= -∠B,
∴∠A=60°
故答案为:D
【分析】根据三角形的外角的性质进行计算即可.
7.【解析】【解答】由图知,八年级(3)班的全体人数为: (人)
选择“5G时代”的人数为:30人
∴选择“ 时代”的频率是:
故答案为:B.
【分析】先计算出八年级(3)班的全体人数,然后用选择“5G时代”的人数除以八年级(3)班的全体人数即可.
8.【解析】【解答】解:由题意将 代入 ,可得 ,即 ,
整理 得, ,
∴ ,
由图像可知 ,
∴ ,
∴ ,
故答案为:A .
【分析】将 代入 ,可得 ,再将 变形整理,得 ,求解即可.
二、填空题
9.【解析】【解答】
故答案为: .
【分析】根据特殊角的三角函数值直接书写即可.
10.【解析】【解答】解:在数轴上到原点的距离小于4的整数有:-3,3,,-2,2,-1,1,0从中任选一个即可
故答案为:3(答案不唯一,3,2,1,0,-1,-2,-3任意一个均可)
【分析】根据数轴特点,判定出答案为:±3,±2,±1,0中任意写出一个即可.
11.【解析】【解答】根据二次根式的运算法则可知:原式=2 − = ,
故答案为: 。
【分析】先将各二次根式化成最简二次根式,再合并同类二次根式即可。
12.【解析】【解答】解:这3天步数的平均数是 (步),
故答案为:6400.
【分析】根据算术平均数的计算公式即可解答.
13.【解析】【解答】由 可设 , ,k是非零整数,
则 .
故答案为: .
【分析】根据比例的基本性质变形,代入求职即可;
14.【解析】【解答】解:阴影部分面积为 ,
故答案为: .
【分析】直接根据扇形的面积计算公式计算即可.
15.【解析】【解答】解:根据垂线段最短可知:当PM⊥OC时,PM最小,
当PM⊥OC时,
又∵OP平分∠AOC, , ,
∴PM=PD=3
故答案为:3
【分析】根据垂线段最短可知当PM⊥OC时,PM最小,再根据角的平分线的性质,即可得出答案.
16.【解析】【解答】解:根据算筹计数法, 表示的数是:8167
故答案为:8167
【分析】根据算筹计数法来计数即可.
三、解答题
17.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
18.【解析】【分析】根据分式的混合运算法则,先化简,再将a=-2代入计算即可.
19.【解析】【分析】(1)直接列举出所有可能出现的结果即可;(2)画出树状图,找出正确的可能结果,再利用概率公式求出概率即可.
20.【解析】【分析】先由DE的坡度计算DC的长度,根据矩形性质得AB长度,再由AF的坡度得出BF的长度,根据勾股定理计算出AF的长度.
21.【解析】【解答】解:(1)由总人数是20人可得在 的人数是 (人),所以a=6,根据数据显示,6.5出现的次数最多,所以数据中心的众数是6.5;
故 , .
【分析】(1)根据所给数据找出 范围内的数据即可;找出数据中次数最多的数据即为所求;(2)根据(1)中的数据画图即可;(3)先算出在 的概率,用总数乘以概率即可;
22.【解析】【分析】(1)AB为 的直径得 ,结合AB=AC,用HL证明全等三角形;(2)由 得BD=BC,结合AO=BO得OD为 的中位线,由 得 ,可得直线DE为 切线.
23.【解析】【分析】(1)由A的坐标求出菱形的边长,利用菱形的性质确定出B的坐标,利用待定系数法求出反比例函数解析式即可;(2)利用相似三角形的性质得出点D的坐标,利用待定系数法求出直线BD解析式即可.
24.【解析】【分析】(1)设购买《北上》和《牵风记》的单价分别为x、y,根据“购买2本《北上》和1本《牵风记》需100元”和“ 购买2本《北上》和1本《牵风记》需100元”建立方程组求解即可;(2)设购买《北上》的数量n本,则购买《牵风记》的数量为50-n,根据“购买《北上》的数量不少于所购买《牵风记》数量的一半”和“购买两种书的总价不超过1600元”两个不等关系列不等式组解答并确定整数解即可.
25.【解析】【分析】(1)连接DE,利用相似三角形证明 ,运用勾股定理求出AD的长,运用三角形面积公式求解即可;(2)根据(1)的证明可求解;(3)①证明△CME∽△ABM得 ,再运用勾股定理求出BE的长即可解决问题;②分别求出S△BMC和S△ABM 即可.
26.【解析】【分析】(1)①根据抛物线的对称轴公式即可求出解析式;②如图1,若点P在x轴上方,点B关于OP对称的点 在对称轴上,连接 、PB,根据轴对称得到 , ,求出点B的坐标,勾股定理得到 ,再根据 ,列出方程解答,同理得到点P在x轴下方时的坐标即可;(2)当 时,确定对称轴的位置,再结合开口方向,确定当 时,函数的增减性,从而得到当x=2时,函数取最大值,再列出不等式解答即可.
2023年湖南省湘潭市中考数学试卷: 这是一份2023年湖南省湘潭市中考数学试卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2019年湖南省湘潭市中考数学试卷: 这是一份2019年湖南省湘潭市中考数学试卷,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2020年湖南省湘潭市中考数学试卷与答案: 这是一份2020年湖南省湘潭市中考数学试卷与答案,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。